Skip to main content
Log in

The Ability of Pluronics to Increase the Survival Rate of Cells Determined by a Hydrophilic Poly(ethylene oxide) Block

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The influence of synthetic water-soluble uncharged block copolymers on the multiplication of cells in a culture is studied. Their hydrophilic blocks are represented by linear poly(ethylene glycol) or branched polyglycerol, and hydrophobic blocks, by poly(propylene oxide) or polydimethylsiloxane. MCF-7/Adr cells are incubated with the copolymers in a serum-free culture medium for one hour, and their number after three days of cultivation without a copolymer is determined. The number of cells increases only under the action of polymers containing a poly(ethylene glycol) block, i.e., the longer this block, the lower the concentration of the polymer sufficient for the increase. The replacement of poly(ethylene glycol) by a hydrophilic block with a different structure, branched polyglycerol, fully cancels such an effect, thus indicating the defining role of poly(ethylene glycol) in the ability of block copolymers to maintain the multiplication of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Alexandridis and T. A. Hatton, Colloids Surf., A 96, 1 (1995).

    Article  CAS  Google Scholar 

  2. M. Almgren, W. Brown, and S. Hvidt, Colloid Polym. Sci. 273, 2 (1995).

    Article  CAS  Google Scholar 

  3. D. Y. Alakhova and A. V. Kabanov, Mol. Pharmaceutics 11, 2566 (2014).

    Article  CAS  Google Scholar 

  4. A. Zhirnov, E. Nam, G. Badun, A. Romanyuk, A. Ezhov, N. Melik-Nubarov, and I. Grozdova, Pharm. Res. 35, 205 (2018).

    Article  CAS  Google Scholar 

  5. O. A. Budkina, T. V. Demina, T. Yu. Dorodnykh, N. S. Melik-Nubarov, and I. D. Grozdova, Polym. Sci., Ser. A 54, 707 (2012).

    Article  CAS  Google Scholar 

  6. H. E. Swim and R. F. Parker, Proc. Soc. Exp. Biol. Med. 103, 252 (1960).

    Article  CAS  Google Scholar 

  7. P. Hellung-Larsen, F. Assaad, S. Pankratova, B. L. Saietz, and L. T. Skovgaard, J. Biotechnol. 76, 185 (2000).

    Article  CAS  Google Scholar 

  8. D. W. Murhammer and C. F. Goochee, Biotechnol. Prog. 6, 391 (1990).

    Article  CAS  Google Scholar 

  9. T. Togo, J. M. Alderton, G. Q. Bi, and R. A. Steinhardt, J. Cell Sci. 112, 719 (1999).

    CAS  PubMed  Google Scholar 

  10. A. A. Exner, T. M. Krupka, K. Scherrer, and J. M. J. Teets, J. Controlled Release 106, 188 (2005).

    Article  CAS  Google Scholar 

  11. A. Mizrahi, J. Clin. Microbiol. 2, 11 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Tharmalingam, H. Ghebeh, T. Wuerz, and M. Butler, Mol. Biotechnol. 39, 167 (2008).

    Article  CAS  Google Scholar 

  13. Z. Zhang, M. al Rubeai, and C. R. Thomas, Enzyme Microb. Technol. 14, 980 (1992).

    Article  CAS  Google Scholar 

  14. V. Kerleta, I. Andrlik, S. Braunmülle, T. Franke, M. Wirth, and F. Gabor, Altex Chromatogram 27 (3/10), 191 (2010).

  15. T. V. Demina, O. A. Budkina, G. A. Badun, N. S. Melik-Nubarov, H. Frey, S. S. Müller, J. Nieberle, and I. D. Grozdova, Biomacromolecules 15, 2672 (2014).

    Article  CAS  Google Scholar 

  16. F. Wurm and H. Frey, Prog. Polym. Sci. 36, 1 (2011).

    Article  CAS  Google Scholar 

  17. V. Istratov, H. Kautz, Y.-K. Kim, R. Schubert, and H. Frey, Tetrahedron 59, 4017 (2003).

    Article  CAS  Google Scholar 

  18. A. Chattopadhyay and E. London, Anal. Biochem. 139, 408 (1984).

    Article  CAS  Google Scholar 

  19. T. Mosmann, J. Immunol. Methods 65, 55 (1983).

    Article  CAS  Google Scholar 

  20. H. Heerklotz and J. Seelig, Biophys. J. 78, 2435 (2000).

    Article  CAS  Google Scholar 

  21. H. Heerklotz and J. Seelig, Biochim. Biophys. Acta 1508, 69 (2000).

    Article  CAS  Google Scholar 

  22. D. N. Pavlov, T. V. Demina, G. A. Badun, I. D. Grozdova, and N. S. Melik-Nubarov, Polym. Sci., Ser. A 48, 1202 (2006).

    Article  Google Scholar 

  23. M. Kozlov, N. Melik-Nubarov, E. Batrakova, and A. Kabanov, Macromolecules 33, 3305 (2000).

    Article  CAS  Google Scholar 

  24. P. Alexandridis, J. F. Holzwarthef, and T. A. Hatton, Macromolecules 27, 2414 (1994).

    Article  CAS  Google Scholar 

  25. G. Wanka, H. Hoffmann, and W. Ulbright, Colloid Polym. Sci. 268, 101 (1990).

    Article  CAS  Google Scholar 

  26. D. N. Pavlov, T. Yu. Dorodnykh, O. V. Zaborova, and N. S. Melik-Nubarov, Polym. Sci., Ser. A 51, 295 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Grozdova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musatova, O.E., Garina, E.S. & Grozdova, I.D. The Ability of Pluronics to Increase the Survival Rate of Cells Determined by a Hydrophilic Poly(ethylene oxide) Block. Polym. Sci. Ser. A 62, 70–77 (2020). https://doi.org/10.1134/S0965545X19050134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19050134

Navigation