Skip to main content
Log in

Anomalous Dimensions of Quark Masses in the Three-Loop Approximation

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The results of calculation of the three-loop radiative correction to the renormalization constant of fermion masses for non-abelian gauge theory interacting with fermions are presented. Dimensional regularization and the t’Hooft-Veltman minimal subtraction scheme are used. The method of calculation is described in detail. The renormalization group function \({{\gamma }_{m}}\) determining the behavior of the effective mass of fermions is presented. The anomalous dimensions of fermions for QED and QCD up to three loops are given. All calculations were performed on a computer with the help of the SCHOOONSCHIP system for analytical manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. V. Shirkov, “Mass dependences in renormalization group solutions,” Theor. Math. Phys. 49, 1039–1043 (1982);

    Article  Google Scholar 

  2. D. V. Shirkov, “Threshold effects at two loop level and parametrization of the real QCD,” Sov. J. Nucl. Phys. 34, 300 (1981).

    Google Scholar 

  3. A. L. Kataev, N. V. Krasnikov, and A. A. Pivovarov, “The use of the finite energetic sum rules for the calculation of the light quark masses,” Phys. Lett. B 123, 93–97 (1983).

    Article  ADS  Google Scholar 

  4. D. V. Nanopoulos and D. A. Ross, “m(b)/m(τ): a sensitive flavor meter,” Phys. Lett. B 108, 351–354 (1982).

    Article  ADS  Google Scholar 

  5. A. A. Vladimirov and D. V. Shirkov, “The renormalization group and ultraviolet asymptotics,” Sov. Phys. Usp. 22, 860–878 (1979).

    Article  ADS  Google Scholar 

  6. G. 't Hooft, “Dimensional regularization and the renormalization group,” Nucl. Phys. B 61, 455–468 (1973).

    Article  ADS  Google Scholar 

  7. W. E. Caswell and F. Wilczek, “On the Gauge dependence of renormalization group parameters,” Phys. Lett. B 49, 291–292 (1974);

    Article  ADS  Google Scholar 

  8. L. Banyai, S. Marculescu, and T. Vescan, “Again on the Gauge dependence of renormalization group parameters,” Lett. Nuovo Cim. 11, 151–155 (1974).

    Article  Google Scholar 

  9. J. C. Collins and A. J. Macfarlane, “New methods for the renormalization group,” Phys. Rev. D: Part. Fields 10, 1201–1212 (1974).

    Article  ADS  Google Scholar 

  10. R. Tarrach, “The pole mass in perturbative QCD,” Nucl. Phys. B 183, 384–396 (1981);

    Article  ADS  Google Scholar 

  11. O. Nachtmann and W. Wetzel, “The beta function for effective quark masses to two loops in QCD,” Nucl. Phys. B 187, 333–342 (1981).

    Article  ADS  Google Scholar 

  12. A. A. Vladimirov, “Methods of multiloop calculations and the renormalization group analysis of phi**4 theory,” Theor. Math. Phys. 36, 732–737 (1979).

    Article  Google Scholar 

  13. H. Strubbe, “Manual for schoonschip: a CDC 6000/7000 program for symbolic evaluation of algebraic expressions,” Comput. Phys. Commun. 8, 1–30 (1974).

    Article  ADS  Google Scholar 

  14. D. Espriu, A. Palanques-Mestre, P. Pascual, and R. Tarrach, “The gamma function in the 1/N-F expansion,” Z. Phys. C 13, 153–156 (1982).

    Article  ADS  Google Scholar 

  15. O. V. Tarasov and A. A. Vladimirov, Phys. Part. Nucl. 44, 791–802 (2013);

    Article  Google Scholar 

  16. O. V. Tarasov and A. A. Vladimirov, “Three-loop calculations in non-Abelian Gauge theories,” JINR Commun. E2-80-483 (JINR, Dubna, 1980); arXiv:1301.5645 [hep-ph].

Download references

ACKNOWLEDGMENTS

I am very grateful to D.V. Shirkov, A.L. Kataev and D.I. Kazakov for valuable discussions.

The present text was published in 1982 as a JINR Communication, JINR-P2-82-900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Tarasov.

APPENDIX

APPENDIX

The three-loop 1PI diagrams of the fermion propagator are given in Fig. 1 and Fig. 2.

figure 1

Fig. 1.

figure 2

Fig. 2.

The contributions to \(Z_{2}^{{ - 1}}\) from different sets of the diagrams (\( - KR{\kern 1pt} '\)):

Figure 1:

$$\begin{gathered} - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{3}}}}\left[ { - \frac{7}{4}{{C}^{2}} - \frac{4}{3}C{{C}_{F}} + \frac{1}{3}Ctf} \right] \\ - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{2}}}}\left[ {\frac{{219}}{{24}}{{C}^{2}} + \frac{{35}}{6}C{{C}_{F}} - \frac{4}{3}{{C}_{F}} - \frac{{19}}{6}Ctf - \frac{4}{3}{{C}_{F}}tf} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\left[ { - \frac{{233}}{{12}}{{C}^{2}} + \frac{{17}}{2}C{{C}_{F}} - \frac{7}{{12}}C_{F}^{2} + \frac{{43}}{6}Ctf} \right. \\ \left. { - \,\,\frac{7}{3}{{C}_{F}}tf} \right] - \frac{{{{C}_{F}}}}{\varepsilon }C\zeta (3)\left( {\frac{5}{2}C - 2{{C}_{F}}} \right). \\ \end{gathered} $$

Figure 2a:

$$\frac{{C_{F}^{2}}}{{{{\varepsilon }^{2}}}}\left( {\frac{5}{{12}}C - \frac{1}{3}tf} \right) + \frac{{C_{F}^{2}}}{\varepsilon }\left( {\frac{3}{8}C - \frac{1}{6}tf} \right).$$

Figure 2b:

$$\begin{gathered} - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{2}}}}\left[ {\frac{{175}}{{72}}{{C}^{2}} - \frac{{55}}{{18}}Ctf + \frac{8}{9}{{t}^{2}}{{f}^{2}}} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\left[ { - \frac{{2171}}{{432}}{{C}^{2}} + \frac{{527}}{{108}}Ctf + 2{{C}_{F}}tf - \frac{{20}}{{27}}{{t}^{2}}{{f}^{2}}} \right]. \\ \end{gathered} $$

Figure 2c:

$$\begin{gathered} - \,\,\frac{{C_{F}^{2}}}{{{{\varepsilon }^{3}}}}\left[ {\frac{1}{3}C - \frac{1}{6}{{C}_{F}}} \right] + \frac{{C_{F}^{2}}}{{{{\varepsilon }^{2}}}}\left[ {3C - \frac{7}{{12}}{{C}_{F}} - \frac{2}{3}tf} \right] \\ - \,\,\frac{{C_{F}^{2}}}{\varepsilon }\left[ {\frac{{91}}{{24}}C - 2\zeta (3)C + \frac{1}{{12}}{{C}_{F}} - \frac{5}{6}tf} \right]. \\ \end{gathered} $$

Figure 2d:   \( - \tfrac{2}{{{{\varepsilon }^{3}}}}C_{F}^{2}C\).

The contributions to \({{Z}_{{\overline \psi \psi }}}\) from the diagrams with the insertion \( - {\kern 1pt} \otimes {\kern 1pt} - \) were calculated simultaneously with the diagrams shown in Figs. 1 and 2. In fact, for the fermion propagator instead of \({{\hat {p}} \mathord{\left/ {\vphantom {{\hat {p}} {{{p}^{2}}}}} \right. \kern-0em} {{{p}^{2}}}}\) we used \((\hat {p} + {{m)} \mathord{\left/ {\vphantom {{m)} {{{p}^{2}}}}} \right. \kern-0em} {{{p}^{2}}}}\), and after multiplication of all propagators we kept only the part without the mass term and the part linear in \(m\). The coefficient in front of \(m\) determines the contribution of the diagrams with the mass insertion. For example, from the diagram

we get the following diagrams with the insertion:

The contributions to \({{Z}_{{\bar {\psi }\psi }}}\) from different sets of diagrams (\( - KR{\kern 1pt} '\))

Figure 1:

$$\begin{gathered} - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{3}}}}\left[ {\frac{{31}}{3}{{C}^{2}} + \frac{{50}}{3}C{{C}_{F}} + 8C_{F}^{2} - 4Ctf - \frac{8}{3}{{C}_{F}}tf} \right] \\ - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{2}}}}\left[ { - \frac{{181}}{6}{{C}^{2}} - \frac{{80}}{3}{{C}_{F}}C + 8C_{F}^{2} + \frac{{34}}{3}Ctf + \frac{8}{3}{{C}_{F}}tf} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\left[ {\frac{{181}}{4}{{C}^{2}} - \frac{{145}}{3}C{{C}_{F}} + 17C_{F}^{2} - 13Ctf + \frac{{20}}{3}{{C}_{F}}tf} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\zeta (3)\left[ { - \frac{3}{2}{{C}^{2}} + 20{{C}_{F}}C - 16C_{F}^{2} - 8Ctf} \right]. \\ \end{gathered} $$

Figure 2a:

$$\begin{gathered} - \,\,\frac{{C_{F}^{2}}}{{{{\varepsilon }^{3}}}}\left[ {\frac{{10}}{3} - \frac{8}{3}tf} \right] - \frac{{C_{F}^{2}}}{{{{\varepsilon }^{2}}}}\left[ { - \frac{{17}}{3}C + 4tf} \right] \\ - \,\,\frac{{C_{F}^{2}}}{\varepsilon }\left[ { - C + \frac{4}{3}tf} \right]. \\ \end{gathered} $$

Figure 2b:

$$\begin{gathered} - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{3}}}}\left[ {\frac{{175}}{{36}}{{C}^{2}} - \frac{{55}}{9}Ctf + \frac{{16}}{9}{{t}^{2}}{{f}^{2}}} \right] \\ - \,\,\frac{{{{C}_{F}}}}{{{{\varepsilon }^{2}}}}\left[ { - \frac{{337}}{{27}}{{C}^{2}} + \frac{{346}}{{27}}Ctf + 4{{C}_{F}}tf - \frac{{64}}{{27}}{{t}^{2}}{{f}^{2}}} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\left[ {\frac{{18685}}{{1296}}{{C}^{2}} - \frac{{1915}}{{324}}Ctf - 17{{C}_{F}}tf - \frac{{80}}{{81}}{{t}^{2}}{{f}^{2}}} \right] \\ - \,\,\frac{{{{C}_{F}}}}{\varepsilon }\zeta (3)\left[ { - {{C}^{2}} - 8Ctf + 16C\,{{~}_{F}}tf} \right]. \\ \end{gathered} $$

Figure 2c:

$$\begin{gathered} - \frac{{C_{F}^{2}}}{{{{\varepsilon }^{3}}}}\left[ {6C + \frac{8}{3}{{C}_{F}} - \frac{8}{3}tf} \right] - \frac{{C_{F}^{2}}}{{{{\varepsilon }^{2}}}}\left[ { - 17C - 10{{C}_{F}} + 4tf} \right] \\ - \,\,\frac{{C_{F}^{2}}}{\varepsilon }\left[ {\frac{{80}}{3}C + 5{{C}_{F}} - \frac{{16}}{3}tf - 16\zeta (3)C + 16\zeta (3){{C}_{F}}} \right]. \\ \end{gathered} $$

Figure 2d: 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, O.V. Anomalous Dimensions of Quark Masses in the Three-Loop Approximation. Phys. Part. Nuclei Lett. 17, 109–115 (2020). https://doi.org/10.1134/S1547477120020223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120020223

Navigation