Skip to main content
Log in

Three Particle Lévy HBT from PHENIX

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Bose–Einstein correlations of identical bosons reveal information about the space-time structure of particle emission from the sQGP formed in ultra-relativistic heavy-ion collisions. Previous measurements of two particle correlations have shown that the source can best be described by a symmetric Levy distribution. Here we report on the measurement of three-particle correlations in 0–30% centrality Au + Au collisions at \(\sqrt {{{s}_{{{\text{NN}}}}} = 200} \) GeV, and describe them with a Lévy type source. This measurement may shed light on hadron creation mechanisms beyond chaotic emission. We measure three particle correlation strength (\({{\lambda }_{3}}\)) as a function of pair transverse momentum. This parameter, combined with two-particle correlation strength \({{a}_{2}}\) may reveal the level of chaoticity and coherence in particle production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Csörgő, Phys. Acta, Hung. A 15, 1 (2002).

    Article  Google Scholar 

  2. S. S. Adleret al. [PHENIX Collab.], Phys. Rev. Lett. 98, 132 301 (2007); arXiv:0605032 [nucl-ex].

  3. M. Csanád [PHENIX Collab.], Nucl. Phys. A 774, 611 (2006); arXiv:0509042 [nucl-ex].

  4. S. Afanasiev et al. [PHENIX Collab.], Phys. Rev. Lett. 100, 232 301 (2008). arXiv:0712.4372 [nucl-ex].

    Article  Google Scholar 

  5. J. Adam et al. [ALICE Collab.], Phys. Rev. C 93, 054 908 (2016); arXiv:1512.08902 [nucl-ex].

  6. S. S. Adler et al. [PHENIX Collab.], Phys. Rev. Lett. 93, 152 302 (2004); arXiv:0401003 [nucl-ex].

  7. L. Adamczyk et al. [STAR Collab.], Phys. Rev. C 92, 014 904 (2015); arXiv:1403.4972 [nucl-ex].

    Article  Google Scholar 

  8. A. Adare et al. [PHENIX Collab.], Phys. Rev. C 97, 064 911 (2018); arXiv:1709.05649 [nucl-ex].

  9. B. Kurgyis [PHENIX Collab.], Acta Phys. Pol. B Proc. Suppl. 12, 477–482 (2019); arXiv:1809.09392 [nucl-ex].

    Article  Google Scholar 

  10. T. Csörgő, B. Lorstad, and J. Zimányi, Z. Phys. C 71, 491 (1996); arXiv:9411307 [hepph].

  11. J. Bolz et al., Phys. Rev. D 47, 3860 (1993).

    Article  ADS  Google Scholar 

  12. T. Csörgő, S. Hegyi, and W. A. Zajc, Eur. Phys. J. C 36, 67 (2004); arXiv:0310042 [nucl-th].

    Article  ADS  Google Scholar 

  13. D. Gangadharan, Phys. Rev. C 92, 014 902 (2015); arXiv:1502.02121 [nucl-th]

  14. T. Csörgő, B. Lörstad, J. Schmid-Sorensen, and A. Ster, Eur. Phys. J. C 9, 275 (1999); arXiv:9812422 [hep-ph].

    Article  ADS  Google Scholar 

Download references

Funding

The author expresses gratitude for the support of Hungarian NKIFH grant no. FK-123842. B. Kurgyis was supported by the UNKP-19-2-II-ELTE-276 New National Excellence Program of the Hungarian Ministry of Human Capacities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kurgyis.

Additional information

Presented by B. Kurgyis at XIV Workshop on Particle Correlatios and Femtoscopy, 3–7 June 2019, Dubna Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgyis, B. Three Particle Lévy HBT from PHENIX. Phys. Part. Nuclei 51, 263–266 (2020). https://doi.org/10.1134/S1063779620030181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620030181

Navigation