Skip to main content
Log in

Coke Formation on Zeolites Y and Their Deactivation Model

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The formation of coke on active sites in the entire volume of zeolite Y crystals has been experimentally confirmed. However, complete deactivation in the case of decationated zeolites is due to the blocking of zeolite space by coke deposition on the outer surface of the crystals. In this case, blocking occurs long before complete poisoning of the active sites in the bulk and filling the large cavities of zeolite Y with the coke. The model of the “inner” deactivation of zeolites Y is applicable only to dealuminated zeolites with a silica ratio equal to or greater than 70–75 or in the case of selective dealumination of the outer surface of the zeolite crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. V. Echevskii, G. V. Kharlamov, N. G. Kalinina, et al., Kinet. Katal. 28, 1456 (1987).

    CAS  Google Scholar 

  2. L. D. Rollman and D. E. Walsh, J. Catal. 56, 139 (1979).

    Article  Google Scholar 

  3. M. Guisnet, P. Magnoux, and C. Canaff, NATO ASI Series C, vol. 165: Chemical Reactions in Organic and Inorganic Constrained Systems, Ed. by R. Setton (Reidel, Dordrecht, 1986), p. 131.

  4. L. D. Rollman and D. E. Walsh, NATO ASI Series E, vol. 54: Progress in Catalyst Deactivation, Ed. by J. L. Figueiredo (Martinus Nijhoff, Hague, 1982), p. 81.

  5. E. G. Derouane, J. P. Gilson, and J. B. Nagy, Appl. Spectrosc. 2, 42 (1982).

    CAS  Google Scholar 

  6. L. Kubelkova, J. Novakova, M. Tipa, and Z. Tvaruzkova, in Proceedings of International Symposium on Zeolite Catalysis, Siófok (Szeged, 1985), p. 649.

  7. J. W. Beekman and G. F. Froment, Ind. Eng. Chem. Fund. 18, 245 (1979).

  8. J. W. Beekman and G. F. Froment, Chem. Eng. Sci. 35, 805 (1980).

    Article  Google Scholar 

  9. P. Magnoux, P. Cartraud, S. Mignard, and M. Guisnet, J. Catal. 106, 235 (1987).

    Article  CAS  Google Scholar 

  10. P. Magnoux, P. Cartraud, S. Mignard, and M. Guisnet, J. Catal. 106, 242 (1987).

    Article  CAS  Google Scholar 

  11. D. Chen, H. P. Rebo, A. Gronvold, et al., Microporous Mesoporous Mater. 35–36, 121 (2000).

    Article  Google Scholar 

  12. R. Johansson, S. L. Hruby, J. Rass-Hansen, and C. H. Christensen, Catal. Lett. 127, 1 (2009).

    Article  CAS  Google Scholar 

  13. H. Shulz, Catal. Today 154, 183 (2010).

    Article  Google Scholar 

  14. H. K. Beyer and I. M. Belenykaja, Studies in Surface Science and Catalysis, vol. 5: Catalysis by Zeolites, Ed. by B. Imelik, C. Naccache, Y. Ben Taarit, et al. (Elsevier, Amsterdam, 1980), p. 203.

  15. G. V. Echevskii and G. N. Nosyreva, RU Patent 1338169 (1994).

  16. K. G. Ione, E. A. Paukshtis, V. M. Mastikhin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1717 (1981).

  17. A. P. Piven, G. V. Echevskii, V. E. Leonov, and K. G. Ione, React. Kinet. Catal. Lett. 27, 71 (1985).

    Article  CAS  Google Scholar 

  18. P. Guisnet and P. Magnoux, Appl. Catal., A 212, 83 (2001).

  19. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley–Interscience, New York, 1974).

    Google Scholar 

  20. B. A. Holmberg, H. Wang, and Y. Yan, Microporous Mesoporous Mater. 74, 189 (2004).

    Article  CAS  Google Scholar 

  21. A. M. Doyle, T. M. Albayati, A. S. Abbas, and Z. T. Alismaeel, Renew. Energy 97, 19 (2016).

    Article  CAS  Google Scholar 

  22. A. N. R. Bos and P. J. J. Tromp, Ind. Eng. Chem. Res. 34, 3808 (1995).

    Article  CAS  Google Scholar 

  23. W. L. Fanchiang and Y. C. Lin, Appl. Catal., A 419–420, 102 (2012).

  24. Y. Fan, Y. Cai, X. Li, et al., J. Ind. Eng. Chem. 46, 139 (2017).

    Article  CAS  Google Scholar 

  25. F. Bauer and H. G. Karge, Molecular Sieves: Science and Technology, vol. 5: Characterization II, Ed. by H. G. Karge and J. Weitkamp (Springer, Berlin, 1999), p. 249.

  26. G. V. Echevskii, G. V. Kharlamov, V. A. Poluboyarov, et al., Kinet. Katal. 28, 1462 (1987).

    CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the state assignment of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bukhtiyarova.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhtiyarova, M.V., Echevskii, G.V. Coke Formation on Zeolites Y and Their Deactivation Model. Pet. Chem. 60, 532–539 (2020). https://doi.org/10.1134/S0965544120040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120040039

Navigation