Skip to main content
Log in

Study of the Kinetics of Adsorption and Desorption of Water Vapor on Low-Silica Zeolites

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Granular LTA and SOD zeolites have been synthesized, characterized, and further used to study the kinetics of water adsorption and desorption. It has been shown that LTA zeolite in a static mode provides adsorption of water vapor at the level of ~30 wt % for LTA and ~20 wt % for SOD. It has been found that during water adsorption from the gas phase on the LTA or SOD zeolite in a flow-through unit, the dew point reaches –50 or –9°С, respectively. The kinetics of adsorption of water vapor on zeolite granules has been studied; the values of apparent activation energy of the adsorption process have been calculated, which amount to about 50 kJ mol–1; and the rate order of the process has been determined (0.2 for LTA and 0.9 for SOD). The apparent activation energies for water desorption from the zeolites have been calculated by isoconversional analysis in terms of the Friedman, Ozawa–Flynn–Wall, and Kissinger–Akahira–Sunose models. It has been shown that all three models give similar results. It has been found that at given degree of conversion, the activation energies are not higher than 60 kJ mol–1, a value that corresponds to desorption of physically bound water. The increase in activation energy to 110 kJ mol–1 (for SOD) or 80 kJ mol–1 (for LTA) is associated with the removal of water from the α- and β-cages of zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Uses (Wiley, New York, 1974).

    Google Scholar 

  2. A. Pfenninger, Molecular Sieves: Science and Technology, vol. 2: Structures and Structure Determination, Ed. by H. G. Karge and J. Weitkamp (Springer, Berlin, 1999), p. 163.

  3. Ch. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007).

    Google Scholar 

  4. J. A. Rabo, Zeolite Chemistry and Catalysis (American Chemical Society, Washington, 1976).

    Google Scholar 

  5. B. Morris, J. Colloid Interface Sci. 28, 149 (1968).

    Article  CAS  Google Scholar 

  6. A. Gorbach, M. Stegmair, and G. Eigenberger, Adsorption 10, 29 (2004).

    Article  CAS  Google Scholar 

  7. K. F. Loughlin, Adsorption 15, 337 (2009).

    Article  CAS  Google Scholar 

  8. M. M. Dubinin, E. G. Zhukovskaya, and K. O. Murdma, Byull. Akad. Nauk SSSR, Ser. Khim. Nauki, No. 15, 590 (1966).

    Google Scholar 

  9. Y. K. Ryu, S. J. Lee, J. W. Kim, et al., J. Korean Chem. Eng. Sci. 18, 525 (2001).

    Article  CAS  Google Scholar 

  10. M. Tatlier, G. Munz, and S. K. Henninger, Microporous Mesoporous Mater. 264, 70 (2018).

    Article  CAS  Google Scholar 

  11. M. Gaulke, V. Guschin, S. Knapp, et al., Microporous Mesoporous Mater. 233, 39 (2016).

    Article  CAS  Google Scholar 

  12. N. E. Gordina, V. Yu. Prokof’ev, Yu. N. Kul’pina, et al., Ultrason. Sonochem. 33, 210 (2016).

    Article  CAS  Google Scholar 

  13. V. Yu. Prokof’ev and N. E. Gordina, RU Patent No. 2586695 (2016).

  14. V. V. Boldyrev, Experimental Methods in Mechanochemistry of Solid Inorganic Substances (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  15. T. Ekström, C. Chatfield, W. Wruss, and M. J. Maly-Schreiber, Mater. Sci. 20, 1266 (1985).

    Article  Google Scholar 

  16. As. M. Gumerov and A. N. Valeev, Mathematical Modeling of Industrial Chemical Processes (KolosS, Moscow, 2008) [in Russian].

  17. T. Ozawa, Thermochim. Acta 355, 35 (2000).

    Article  CAS  Google Scholar 

  18. F. Baitalow, H.-G. Schmidt, and G. Wolf, Thermochim. Acta 337, 111 (1999).

    Article  CAS  Google Scholar 

  19. H. L. Friedman, J. Polym. Sci., B: Polym. Lett. 7, 41 (1969).

    Article  CAS  Google Scholar 

  20. T. Ozawa, Bull. Chem. Soc. Jpn. 38, 1881 (1965).

    Article  CAS  Google Scholar 

  21. J. H. Flynn and L. A. Wall, J. Polym. Sci., B: Polymer Lett. 4, 323 (1966).

    Article  CAS  Google Scholar 

  22. C. D. J. Doyle, Appl. Polym. Sci. 5, 285 (1961).

    Article  CAS  Google Scholar 

  23. H. E. Kissinger, J. Res. Natl. Bur. Stand. 57, 217 (1956).

    Article  CAS  Google Scholar 

  24. T. Akahira and T. Sunose, Res. Rep, Chiba Inst. Technol. 16, 22 (1971).

    Google Scholar 

  25. A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).

    Article  CAS  Google Scholar 

  26. S. R. Morrison, The Chemical Physics of Surfaces, Ed. by S. R. Morrison (Springer, Boston, 1977), p. 223.

    Book  Google Scholar 

  27. M. M. Dubinin, E. G. Zhukovskaya, and K. O. Murdma, Bull. Acad. Sci. USSR, Div. Chem. Sci. 15, 590 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’ev, V.Y., Gordina, N.E., Zakharov, O.N. et al. Study of the Kinetics of Adsorption and Desorption of Water Vapor on Low-Silica Zeolites. Pet. Chem. 60, 550–556 (2020). https://doi.org/10.1134/S0965544120040155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120040155

Keywords:

Navigation