Skip to main content
Log in

Role of Texture and Acidity of SAPO-34 in Methanol to Olefins Conversion

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of the amount of the molecular template tetraethylammonium hydroxide (TEAOH) in the precursor mixture on the physicochemical properties of SAPO-34 crystals has been examined, and the catalysts obtained have been tested in methanol conversion to lower olefins (MTO). The analysis of the textural and acidic properties of SAPO-34, which determine the high catalytic performances of catalysts in MTO, has been carried out. An effective catalyst possesses a high acidity and a developed surface with a large specific mesopore volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. https://www.uop.com/wp-content/uploads/2013/12/Methanol-to-Olefins-Technology_Hydrocarbon-Engineering-Dec-2013.pdf

REFERENCES

  1. M. Popova, C. Minchev, and V. Kanazirev, Appl. Catal., A 169, 227 (1998).

  2. L. Ye, F. Cao, W. Ying, et al., J. Porous Mater. 18, 225 (2011).

    Article  CAS  Google Scholar 

  3. M. Salmasi, S. Fatemi, and S. J. Hashemi, Sci. Iran 19, 1632 (2012).

    Article  CAS  Google Scholar 

  4. S. Masoumi, J. Towfighi, A. Mohamadalizadeh, et al., Appl. Catal., A 493, 103 (2015).

  5. H. Bahrami, J. T. Darian, and M. Sedighi, Microporous Mesoporous Mater. 261, 111 (2018).

    Article  CAS  Google Scholar 

  6. M. Sedighi, J. Towfighi, and A. Mohamadalizadeh, Powder Technol. 259, 81 (2014).

    Article  CAS  Google Scholar 

  7. T. Álvaro-Muñoz, C. Márquez-Álvarez, and E. Sastre, Catal. Today 213, 219 (2013).

    Article  Google Scholar 

  8. F. K. Kohdami, J. T. Daryan, and H. N. Arbatani, Iran. J. Chem. Eng. 11, 16 (2014).

    Google Scholar 

  9. S. Askari and R. Halladj, Ultrason. Sonochem 19, 554 (2012).

    Article  CAS  Google Scholar 

  10. Y. Pan, G. Chen, G. Yang, et al., Inorg. Chem. Front. 6, 1299 (2019).

    Article  CAS  Google Scholar 

  11. G. Liu, P. Tian, J. Li, et al., Microporous Mesoporous Mater. 111, 143 (2008).

    Article  CAS  Google Scholar 

  12. Y. Zhang, Z. Ren, Y. Wang, et al., Catalysts 8, 570 (2018).

    Article  Google Scholar 

  13. E. Dumitriu, A. Azzouz, V. Hulea, et al., Microporous Mater. 10, 1 (1997).

    Article  CAS  Google Scholar 

  14. T. Álvaro-Muñoz, C. Márquez-Álvarez, and E. Sastre, Catal. Today 179, 27 (2012).

    Article  Google Scholar 

  15. R. Vomscheid, M. Briend, M. J. Peltre, et al., J. Phys. Chem. 98, 9614 (1994).

    Article  CAS  Google Scholar 

  16. F. Di Renzo, Catal. Today 41, 37 (1998).

    Article  CAS  Google Scholar 

  17. S. H. Jhung, J. H. Lee, and J. S. Chang, Microporous Mesoporous Mater. 112, 178 (2008).

    Article  CAS  Google Scholar 

  18. H. van Heyden, S. Mintova, and T. Bein, Chem. Mater. 20, 2956 (2008).

    Article  CAS  Google Scholar 

  19. X. Chen, D. Xi, Q. Sun, et al., Microporous Mesoporous Mater. 234, 401 (2016).

    Article  CAS  Google Scholar 

  20. T. Kodaira, K. Miyazawa, T. Ikeda, and Y. Kiyozumi, Microporous Mesoporous Mater. 29, 329 (1999).

    Article  CAS  Google Scholar 

  21. S. H. Jhung, Y. K. Hwang, J. S. Chang, and S. E. Park, Microporous Mesoporous Mater. 67, 151 (2004).

    Article  CAS  Google Scholar 

  22. R. Roldán, M. Sánchez-Sánchez, G. Sankar, et al., Microporous Mesoporous Mater. 99, 288 (2007).

    Article  Google Scholar 

  23. E. V. Parkhomchuk, K. V. Fedotov, V. S. Semeykina, and A. I. Lysikov, Catal. Today (2019).

  24. G. Sastre, D. W. Lewis, and C. R. A. Catlow, J. Mol. Catal., A 119, 349 (1997).

  25. G. Sastre, D. W. Lewis, and C. R. A. Catlow, J. Phys. Chem. 100, 6722 (1996).

    Article  CAS  Google Scholar 

  26. G. V. Gibbs, E. P. Meagher, J. V. Smith, and J. J. Pluth, ACS Symposium Series, vol. 40: Molecular Sieves—II, Ed. by J. R. Katzer (American Chemical Society, Washington. DC, 1977), p. 19.

  27. R. Vomscheid, M. Briend, M. J. Peltre, et al., J. Phys. Chem. 98, 9614 (1994).

    Article  CAS  Google Scholar 

  28. D. Chen, K. Moljord, T. Fuglerud, and A. Holmen, Microporous Mesoporous Mater. 29, 191 (1999).

    Article  CAS  Google Scholar 

  29. T. Y. Park and G. F. Froment, Ind. Eng. Chem. Res. 40, 4172 (2001).

    Article  CAS  Google Scholar 

  30. T. Y. Park and G. F. Froment, Ind. Eng. Chem. Res. 40, 4187 (2001).

    Article  CAS  Google Scholar 

  31. M. Bjørgen, S. Svelle, F. Joensen, Jet al., J. Catal. 249, 195 (2007).

    Article  Google Scholar 

  32. P. Tian, Y. Wei, M. Ye, and Z. Liu, ACS Catal. 5, 1922 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation (project АААА-А17-117041710077-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shamanaeva.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanaeva, I.A., Yu, Z., Utemov, A.V. et al. Role of Texture and Acidity of SAPO-34 in Methanol to Olefins Conversion. Pet. Chem. 60, 471–478 (2020). https://doi.org/10.1134/S0965544120040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120040167

Keywords:

Navigation