Skip to main content
Log in

Indicators of Osmotic and Ion Regulation in the Fish of the White Sea

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The osmotic concentration; the concentrations of sodium and potassium; the content of total, free, attached water fractions in plasma; and the content of interstitial and cerebrospinal fluid, in the brain, muscles, liver, and erythrocytes typical for the fish in the native environment were determined for cod Gadus morhua. Under stress, a protective reaction is implemented, it prevents tissue dehydration by increasing the osmotic concentration in the interstitial fluid in the European flounder Platichthys flesus, spotted wolffish Anarhichas minor, lumpsucker Cyclopterus lumpus, and short-horn sculpin Myoxocephalus scorpius. The osmotic concentration preconditioned by inorganic ions in the muscles, liver, and erythrocytes of cod is significantly lower compared to the internal environment. The lack of ions in the tissues is compensated by the accumulation of organic osmolytes. Similar patterns are observed in euryhaline species when acclimated to the marine environment and in freshwater fish in the zone of critical salinity. Values of the osmotic concentration and sodium and potassium content in the blood plasma and tissues of the White Sea fish refer to the corresponding regulation ranges obtained for euryhaline and freshwater fish in the salinity range compatible with life activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ahokas, R.A. and Duerr, F.G., Salinity tolerance and extracellular osmoregulation in two species of euryhaline teleost, Culaea inconstans and Fundulus diaphanous, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1975, vol. 52, pp. 445–448. https://doi.org/10.1016/S0300-9629(75)80063-6

    Article  CAS  Google Scholar 

  2. Ahokas, R.A. and Sorg, G., The effect of salinity and temperature on intracellular osmoregulation and muscle free amino acids in Fundulus diaphanous, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1977, vol. 56, pp. 101–105. https://doi.org/10.1016/0300-9629(77)90448-0

    Article  CAS  Google Scholar 

  3. Altinok, I., Galli, S.M., and Chapman, F.A., Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1998, vol. 120, pp. 609–616. https://doi.org/10.1016/S1095-6433(98)10073-9

    Article  Google Scholar 

  4. Andreeva, A.M., Chalov, Yu.P., and Ryabtseva, I.P., Peculiarities of distribution of plasma proteins between internal medium specialized compartments in the carp Cyprinus carpio,J. Evol. Biochem. Physiol., 2007, vol. 43, no. 6, pp. 596–598. https://doi.org/10.1134/S0022093007060096

    Article  Google Scholar 

  5. Assem, H. and Hanke, W., Volume regulation of muscle cells in the euryhaline teleost, Tilapia mossambica, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1979, vol. 64, pp. 17–23. https://doi.org/10.1016/0300-9629(79)90423-7

    Article  Google Scholar 

  6. Assem, H. and Hanke, W., The significance of the amino acids during osmotic adjustment in teleost fish—I. Changes in the euryhaline Sarotherodon mossambicus, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1983, vol. 74, pp. 531–536. https://doi.org/10.1016/0300-9629(83)90543-1

    Article  Google Scholar 

  7. Barton, M., Serum osmoregulation in two species of estuarine blennioid fish, Anoplarchus purpurescens and Pholis ornate, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1979, vol. 64, pp. 305–307. https://doi.org/10.1016/0300-9629(79)90665-0

    Article  Google Scholar 

  8. Beamish, F.W.H., Muscular fatigue and mortality in haddock, Melanogrammus aeglefinus, caught by otter trawl, J. Fish. Res. Board Can., 1966, vol. 23, no. 10, pp. 1507–1521. https://doi.org/10.1139/f66-141

    Article  CAS  Google Scholar 

  9. Becker, A.G., Gonçalves, J.F., Toledo, J.A., et al., Plasma ion levels of freshwater and marine/estuarine teleosts from Southern Brazil, Neotrop. Ichthyol., 2011, vol. 9, pp. 895–900. https://doi.org/10.1590/S1679-62252011005000039

    Article  Google Scholar 

  10. Bourne, P.K., Changes in haematological parameters associated with capture and captivity of the marine teleost, Pleuronectes platessa L., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1986, vol. 85, no. 3, pp. 435–443. https://doi.org/10.1016/0300-9629(86)90426-3

    Article  CAS  Google Scholar 

  11. Christensen, E.A.F., Svendsen, M.B.S., and Steffensen, J.F., Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures, J. Fish Biol., 2016, vol. 90, no. 3, pp. 834–846. https://doi.org/10.1111/jfb.13200

    Article  CAS  Google Scholar 

  12. Davis, K.B. and Simco, B.A., Salinity effects on plasma electrolytes of channel catfish, Ictalurus punctatus,J. Fish. Res. Board Can., 1976, vol. 33, pp. 741–746. https://doi.org/10.1139/f76-091

    Article  CAS  Google Scholar 

  13. Evans, D.H., Piermarini, P.M., and Choe, K.P., The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev., 2005, vol. 85, pp. 97–177. https://doi.org/10.1152/physrev.00050.2003

    Article  CAS  PubMed  Google Scholar 

  14. Fletcher, C.R., Stress and water balance in the plaice Pleuronectes platessa,J. Comp. Physiol. B, 1992, vol. 162, no. 6, pp. 513–519. https://doi.org/10.1007/BF00264811

    Article  Google Scholar 

  15. Fletcher, G.L., The effects of capture, “stress” and storage of whole blood on the red blood cells, plasma proteins, glucose, and electrolytes of the winter flounder (Pseudopleuronectes americanus), Can. J. Zool., 1975, vol. 53, no. 2, pp. 197–206. https://doi.org/10.1139/z75-024

    Article  CAS  PubMed  Google Scholar 

  16. Fugelli, K. and Zachariassen, K.E., The distribution of taurine, gamma-aminobutyric acid and inorganic ions between plasma and erythrocytes in flounder (Platichthys flesus) at different plasma osmolalities, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1976, vol. 55, pp. 173–177. https://doi.org/10.1016/0300-9629(76)90088-8

    Article  CAS  Google Scholar 

  17. Gaumet, F., Boeuf, G., Severe, A., et al., Effects of salinity on the ionic balance and growth of juvenile turbot (Scophthalmus maximus), J. Fish Biol., 1995, vol. 47, no. 5, pp. 865–876. https://doi.org/10.1111/j.1095-8649.1995.tb06008.x

    Article  Google Scholar 

  18. Gordon, M.S., Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads, Biol. Bull., 1965, vol. 128, pp. 218–229

    Article  CAS  Google Scholar 

  19. Gordon, M.S., Amdur, B.H., and Scholander, P.F., Freezing resistance in some northern fishes, Biol. Bull., 1962, vol. 122, no. 1, pp. 52–62.

    Article  Google Scholar 

  20. Grosell, M., Intestinal anion exchange in marine fish osmoregulation, J. Exp. Biol., 2006, vol. 209, pp. 2813–2827. https://doi.org/10.1242/jeb.02345

    Article  CAS  PubMed  Google Scholar 

  21. Grosell, M., Intestinal transport, in The Physiology of Fishes, Boca Raton, FL: CRC Press, 2013, pp. 175–204.

    Google Scholar 

  22. Hegab, S.A. and Hanke, W., Electrolyte changes and volume regulatory processes in the carp (Cyprinus carpio) during osmotic stress, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1982, vol. 71, pp. 157–164. https://doi.org/10.1016/0300-9629(82)90384-X

    Article  Google Scholar 

  23. Hegab, S.A. and Hanke, W., The significance of the amino acids during osmotic adjustment in teleost fish. II. Changes in the stenohaline Cyprinus carpio, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1983, vol. 74, pp. 537–543. https://doi.org/10.1016/0300-9629(83)90544-3

    Article  Google Scholar 

  24. Hegab, S.A. and Hanke, W., Electrolyte changes, cell volume regulation and hormonal influences during acclimation of rainbow trout (Salmo gairdneri) to salt water, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1986, vol. 83, pp. 47–52. https://doi.org/10.1016/0300-9629(86)90086-1

    Article  Google Scholar 

  25. Houston, A.H. and Smeda, J.S., Thermoacclimatory changes in the ionic microenvironment of haemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio), J. Exp. Biol., 1979, vol. 80, pp. 317–340.

    CAS  PubMed  Google Scholar 

  26. Huggins, A.K. and Colley, L., The changes in the non-protein nitrogenous constituents of muscle during the adaptation of the eel Anguilla anguilla L. from fresh water to sea water, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1971, vol. 38, pp. 537–541. https://doi.org/10.1016/0305-0491(71)90310-5

    Article  CAS  Google Scholar 

  27. Hwang, P.P. and Lee, T.H., New insights into fish ion regulation and mitochondrion-rich cells, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, vol. 148, pp. 479–497. https://doi.org/10.1016/j.cbpa.2007.06.416

    Article  CAS  Google Scholar 

  28. Hwang, P.P. and Lin, L.Y., Gill ionic transport, acid-base regulation, and nitrogen excretion, in The Physiology of Fishes, Boca Raton, FL: CRC Press, 2013, pp. 205–234.

    Google Scholar 

  29. Hwang, P.P., Sun, C.M., and Wu, S.M., Changes of plasma osmolality, chloride concentration and gill Na–K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation, Mar. Biol., 1989, vol. 100, pp. 295–299. https://doi.org/10.1007/BF00391142

    Article  Google Scholar 

  30. Hwang, P.P., Lee, T.H., and Lin, L.Y., Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 301, pp. R28–R47. https://doi.org/10.1152/ajpregu.00047.2011

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko, T., Watanabe, S., and Lee, K.M., Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts, Aqua-BioSci. Monogr., 2008, vol. 1, pp. 1–62. https://doi.org/10.5047/absm.2008.00101.0001

    Article  Google Scholar 

  32. Khlebovich, V.V., Kriticheskaya solenost’ biologicheskikh protsessov (Critical Salinity for Biological Processes), Leningrad: Nauka, 1974.

  33. Lange, R. and Fugelli, K., The osmotic adjustment in the euryhaline teleosts, the flounder, Pleuronectes flesus L. and the three-spined stickleback, Gasterosteus aculeatus L., Comp. Biochem. Physiol., 1965, vol. 15, pp. 283–292. https://doi.org/10.1016/0010-406X(65)90132-5

    Article  CAS  PubMed  Google Scholar 

  34. Lasserre, P. and Gilles, R., Modification of the amino acid pool in the parietal muscle of two euryhaline teleosts during osmotic adjustment, Experientia, 1971, vol. 27, no. 12, pp. 1434–1435. https://doi.org/10.1007/BF02154273

    Article  CAS  PubMed  Google Scholar 

  35. Leader, J.P. and Bedford, J.J., Volume regulation in vitro of muscle fibers of the crab, Hemigrapsus edwardsi,J. Comp. Physiol. B, 1978, vol. 128, pp. 153–159. https://doi.org/10.1007/BF00689479

    Article  Google Scholar 

  36. Lundgreen, K., Kiilerich, P., Tipsmark, C.K., et al., Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions, J. Comp. Physiol. B, 2008, vol. 178, pp. 909–915. https://doi.org/10.1007/s00360-008-0281-9

    Article  CAS  PubMed  Google Scholar 

  37. Macfarlane, N.A.A., Effect of hypophysectomy on osmoregulation in the euryhaline flounder, Platichthys flesus (L.) in seawater and in fresh water, J. Comp. Physiol. A, 1974, vol. 47, no. 1, pp. 201–217. https://doi.org/10.1016/0300-9629(74)90065-6

    Article  CAS  Google Scholar 

  38. Marshall, W.S. and Grosell, M., Ion transport, osmoregulation and acid-base balance, in The Physiology of Fishes, Boca Raton, FL: CRC Press, 2006, pp. 177–230.

    Google Scholar 

  39. Martem’yanov, V.I., Ranges of regulation of sodium, potassium, calcium, magnesium levels in plasma, erythrocytes, and muscle tissues of Rutilus rutilus in natural conditions, J. Evol. Biochem. Physiol., 2001, vol. 37, no. 2, pp. 141–147.

    Article  Google Scholar 

  40. Martemyanov, V.I., Stress in fishes: protective and damaging processes, Biol. Vnutr. Vod., 2002, no. 4, pp. 3–13.

  41. Martemyanov, V.I., Determination of total, free, and related water fraction in organism and tissues of hydrobionts, Voda: Khim. Ekol., 2014a, no. 2, pp. 86–91.

  42. Martemyanov, V.I., Dynamics of sodium and potassium in plasma, erythrocytes, and muscles of freshwater species under the effect of long-term combined stress, Inland Water Biol., 2014b, vol. 7, no. 4, pp. 389–393. https://doi.org/10.1134/S1995082914030122

    Article  Google Scholar 

  43. Martemyanov, V.I., Mechanisms of regulation of erythrocyte volume in common carp Cyprinus carpio (Cyprinidae) at increase in the osmotic concentration of blood plasma within the zone of critical water salinity, J. Ichthyol., 2017, vol. 57, no. 2, pp. 306–312. https://doi.org/10.1134/S0032945217020114

    Article  Google Scholar 

  44. Martemyanov, V.I. and Poddubnaya, N.Y., Volume regulation of muscle cells in the carp Cyprinus carpio in response to hypernatremia, Bratisl. Med. J., 2019, vol. 120, no. 1, pp. 52–57. https://doi.org/10.4149/BLL_2019_008

    Article  CAS  Google Scholar 

  45. Martemyanov, V.I. and Vasiliev, A.S., Regulation of volumes of the muscle, liver, and brain erythrocytes in crucian carp Carassius auratus (Cyprinidae) in response to increase in the osmotic concentration in blood plasma, J. Ichthyol., 2018, vol. 58, no. 4, pp. 563–569. https://doi.org/10.1134/S0032945218040112

    Article  Google Scholar 

  46. Natochin, Yu.V., Shakhmatova, E.I., Lavrova, E.A., et al., Regulation of volumes of cells of some organs and tissues in freshwater and migratory fishes in gradient of osmolality and ion composition of blood plasma, Zh. Evol. Biokhim. Fiziol., 1991, vol. 27, no. 2, pp. 159–166.

    Google Scholar 

  47. Ogawa, M., Wada, Y., Matsuura, Y., and Fukuchi, M., Seasonal difference of the plasma osmolalities of some teleosts in high-latitude cold water in Japan, Proc. Sixteenth Symp. on Polar Biology, Tokyo, 1995, vol. 8, pp. 177–181.

  48. Oikari, A., Aspects of osmotic and ionic regulation in two Baltic teleosts: effects of salinity on blood and urine composition, Mar. Biol., 1978, vol. 44, no. 4, pp. 345–355. https://doi.org/10.1007/BF00390899

    Article  Google Scholar 

  49. Plante, S., Audet, C., Lambert, Y., and de la Noüe, J., Comparison of stress responses in wild and captive winter flounder (Pseudopleuronectes americanus Walbaum) broodstock, Aquacult. Res., 2003, vol. 34, pp. 803–812. https://doi.org/10.1046/j.1365-2109.2003.00881.x

    Article  Google Scholar 

  50. Renfro, J.L. and Hill, L.G., Osmotic acclimation in the Red River pupfish, Cyprinodon rubrofluviatilis, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1971, vol. 40, pp. 711–714. https://doi.org/10.1016/0300-9629(71)90255-6

    Article  CAS  Google Scholar 

  51. Robertson, L., Thomas, P., and Arnold, C.R., Plasma cortisol and secondary stress responses of cultured red drum (Sciaenops ocellatus) to several transportation procedures, Aquaculture, 1988, vol. 68, no. 2, pp. 115–130. https://doi.org/10.1016/0044-8486(88)90235-9

    Article  CAS  Google Scholar 

  52. Schmidt-Nielsen, B., Volume regulation of muscle fibres in the killifish, Fundulus heteroclitus,J. Exp. Zool., 1977, vol. 199, pp. 411–418. https://doi.org/10.1002/jez.1401990315

    Article  CAS  PubMed  Google Scholar 

  53. Somero, G.N., Protons, osmolytes, and fitness of internal milieu for protein function, Am. J. Physiol., 1986, vol. 251, pp. R197–R213. https://doi.org/10.1152/ajpregu.1986.251.2.R197

    Article  CAS  PubMed  Google Scholar 

  54. Stanley, J.G. and Fleming, W.R., Failure of seawater-acclimation to alter osmotic toxicity in Fundulus kansae, Comp. Biochem. Physiol., Part A:Mol. Integr. Physiol., 1977, vol. 58, pp. 53–56. https://doi.org/10.1016/0300-9629(77)90014-7

    Article  Google Scholar 

  55. Swift, D.J., Blood component value changes in the Atlantic mackerel (Scomber scombrus L.) subjected to capture, handling and confinement, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1983, vol. 76, no. 4, pp. 795–802. https://doi.org/10.1016/0300-9629(83)90143-3

    Article  Google Scholar 

  56. Takeuchi, K., Toyohara, H., Kinoshita, M., and Sakaguchi, M., Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation, Fish Physiol. Biochem., 2001, vol. 23, pp. 173–182. https://doi.org/10.1023/A:1007889725718

    Article  Google Scholar 

  57. Takeuchi, K., Toyohara, H., Kinoshita, M., and Sakaguchi, M., Role of taurine in hyperosmotic stress response of fish cells, Fish. Sci., 2002, vol. 68, pp. 1177–1180. https://doi.org/10.2331/fishsci.68.sup2_1177

    Article  Google Scholar 

  58. Tort, L., Montero, D., Robaina, L., et al., Consistency of stress response to repeated handling in the gilthead sea bream Sparus aurata Linnaeus, 1758, Aquacult. Res., 2001, vol. 32, pp. 593–598. https://doi.org/10.1046/j.1365-2109.2001.00607.x

    Article  Google Scholar 

  59. Turner, J.D., Schrag, J.D., and Devries, A.L., Ocular freezing avoidance in Antarctic fish, J. Exp. Biol., 1985, vol. 118, pp. 121–131.

    Google Scholar 

  60. Umminger, B.L., Effects of subzero temperatures and trawling stress on serum osmolality in the winter flounder Pseudopleuronectes americanus,Biol. Bull., 1970, vol. 139, no. 3, pp. 574–579. https://doi.org/10.2307/1540375

    Article  CAS  PubMed  Google Scholar 

  61. Venkatachari, S.A.T., Effect of salinity adaptation on nitrogen metabolism in the freshwater fish Tilapia mossambica. I. Tissue protein and amino acid levels, Mar. Biol., 1974, vol. 24, pp. 57–63. https://doi.org/10.1007/BF00402847

    Article  CAS  Google Scholar 

  62. Vislie, T., Hyper-osmotic cell volume regulation in vivo and in vitro in flounder (Platichthys flesus) heart ventricles, J. Comp. Physiol., 1980, vol. 140, no. 3, pp. 185–191. https://doi.org/10.1007/BF00690402

    Article  Google Scholar 

  63. Vislie, T. and Fugelli, K., Cell volume regulation in flounder (Platichthys flesus) heart muscle accompanying and alteration in plasma osmolality, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1975, vol. 52, pp. 415–418. https://doi.org/10.1016/S0300-9629(75)80057-0

    Article  CAS  Google Scholar 

  64. Wardle, C.S., The changes in blood glucose in Pleuronectes platessa following capture from the wild: a stress reaction, J. Mar. Biol. Ass. U.K., 1972, vol. 52, no. 3, pp. 635–651. https://doi.org/10.1017/S0025315400021627

    Article  CAS  Google Scholar 

  65. Whittamore, J.M., Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish, J. Comp. Physiol. B, 2012, vol. 182, pp. 1–39. https://doi.org/10.1007/s00360-011-0601-3

    Article  PubMed  Google Scholar 

  66. Wood, C.M. and Bucking, C., The role of feeding in salt and water balance, Fish Physiol., 2010, vol. 30, pp. 165–212. https://doi.org/10.1016/S1546-5098(10)03005-0

    Article  Google Scholar 

Download references

Funding

The work was carried out as part of State Task theme no. AAAA-A18-118012690101-2 and supported by the Russian Foundation for Basic Research (project no. 16-04-00120a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Martemyanov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemyanov, V.I. Indicators of Osmotic and Ion Regulation in the Fish of the White Sea. J. Ichthyol. 60, 305–314 (2020). https://doi.org/10.1134/S0032945220020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945220020101

Keywords:

Navigation