Skip to main content
Log in

Generation of Alternative Connections of Series-Connected Subsystems in a Redundant Equipment Complex

  • SYSTEMS ANALYSIS AND OPERATIONS RESEARCH
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

An analytical approach is developed to integrate redundant equipment complexes (ECs) with linear stationary models. A general technique for managing the redundancy of the complex at the design stage is formulated in the case of ensuring the invariance of the given set of transfer functions. A formalism is obtained for solving the integration problem of a complex when it is configured as a sequence of related subsystems. The formalism includes both the conditions for the admissibility of a preselected configuration and the formula for the entire set of alternative relationships between components that ensure the fulfillment of the given objective function of the complex. An example of a simple navigation system consisting of measuring and indicator subsystems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. S. Aleshin, V. I. Babkin, L. M. Gokhberg, et al., Foresight of the Development of Aviation Science and Technology until 2030 and Beyond (TsAGI, Moscow, 2014) [in Russian].

  2. V. N. Bukov, A. V. Evgenov, and V. A. Shurman, “Integrated systems of avionics with controlled functional redundancy,” in Proceedings of the Academic Zhukovskii Readings, 5th International Conference (VUNTs VVS VVA, Voronezh, 2017), pp. 32–40.

  3. V. N. Bukov, A. V. Evgenov, and V. A. Shurman, “Functional redundancy management of advanced integrated avionics systems,” in Proceedings of the Workshop of Interdepartmental Working Group to Prepare Proposals Aimed at Identifying Promising and Breakthrough Areas of Scientific, Technical and Innovative Development of the Aviation Industry (Moscow, Studiya Etnika, 2018), pp. 45–53.

  4. A. A. Tarasov, Functional Reconfiguration of Fault Tolerant Systems (Logos, Moscow, 2012) [in Russian].

    Google Scholar 

  5. A. M. Ageev, A. M. Bronnikov, V. N. Bukov, and I. F. Gamayunov, “Supervisory control method for redundant technical systems,” J. Comput. Syst. Sci. Int. 56, 410 (2017).

    Article  Google Scholar 

  6. V. N. Bukov, A. M. Bronnikov, A. M. Ageev, and I. F. Gamayunov, “An analytic approach to constructing configurations of technical systems,” Autom. Remote Control 78, 1600 (2017).

    Article  MathSciNet  Google Scholar 

  7. I. F. Gamayunov, “Generation of alternative solutions in the redundancy management problem for hardware complexes,” Autom. Remote Control 79, 655 (2018).

    Article  MathSciNet  Google Scholar 

  8. A. M. Ageev, “Configuring of excessive onboard equipment sets,” J. Comput. Syst. Sci. Int. 57, 640 (2018).

    Article  Google Scholar 

  9. V. N. Bukov and A. M. Bronnikov, “Testing the configurations of redundant integrated equipment complexes,” Autom. Remote Control 80, 262 (2019).

    Article  MathSciNet  Google Scholar 

  10. V. N. Bukov, A. M. Bronnikov, A. M. Ageev, and I. F. Gamayunov, “Integration of an equipment complex with a selected configuration,” Autom. Remote Control 80, 676 (2019).

    Article  MathSciNet  Google Scholar 

  11. B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  12. Methods of the Classical and Modern Theory of Automatic Control, The School-Book, Vol. 1: Mathematical Models, Dynamic Characteristics and Analysis of Automatic Control Systems, Ed. by K. A. Pupkov and N. D. Egupov (Izd. MGTU im. N. E. Baumana, Moscow, 2004) [in Russian].

  13. V. N. Bukov, Embedding Systems. An Analytical Approach to the Analysis and Synthesis of Matrix Systems (Izdat. Nauch. Liter. N. F. Bochkarevoi, Kaluga, 2006)) [in Russian].

    Google Scholar 

  14. S. V. Goryunov and V. N. Bukov, “Inversion and canonization of block matrices,” Math. Notes 79, 614 (2006).

    Article  MathSciNet  Google Scholar 

  15. A. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA, 1974).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Gamayunov.

APPENDIX

APPENDIX

Proof of the theorem. The solution to the problem is related to the resolution of the equation

$${{\Phi }_{{{\text{req}}}}}(z) = \left[ {\begin{array}{*{20}{c}} 0&{\beta ''} \end{array}} \right]\underbrace {\left[ {\begin{array}{*{20}{c}} {D'}&0 \\ 0&{D''} \end{array}} \right]}_D{{\underbrace {\left[ {\begin{array}{*{20}{c}} {zI' - A'}&0 \\ {B''C_{{{\text{in}}}}^{{''}}{{E}^{{21}}}(z)C_{{{\text{out}}}}^{'}D'}&{zI'' - A''} \end{array}} \right]}_{z{{I}_{n}} - A - B{{Q}^{{21}}}(z)D}}^{{ - 1}}}\underbrace {\left[ {\begin{array}{*{20}{c}} {G'} \\ {G''} \end{array}} \right]}_G\alpha ,$$
(A.1)

where the left side is determined by formula (3.5) with the nominal values of the corresponding matrices relative to the matrix \(E{{}^{{21}}}(z)\). We use the lemma on the inverse of block matrices [15], according to which the following equality is justified:

$${{\left[ {\begin{array}{*{20}{c}} {zI' - A'}&0 \\ {B''{{Q}^{{21}}}(z)D'}&{zI'' - A''} \end{array}} \right]}^{{ - 1}}} = \left[ {\begin{array}{*{20}{c}} {{{{(zI' - A')}}^{{ - 1}}}}&0 \\ { - {{{(zI'' - A'')}}^{{ - 1}}}B''{{Q}^{{21}}}(z)D'{{{(zI' - A')}}^{{ - 1}}}}&{{{{(zI'' - A'')}}^{{ - 1}}}} \end{array}} \right].$$

As a result, by introducing the notation \({{\Phi }_{{{\text{req}}}}}(z) = [\begin{array}{*{20}{c}} 0&{\beta ''W_{{y{\text{nom}}}}^{{v}}(z)\alpha } \end{array}]\), we get the equation

$$\begin{gathered} \text{[}\begin{array}{*{20}{c}} 0&{\beta ''W_{{y{\text{nom}}}}^{{v}}(z)\alpha } \end{array}] \\ = \left[ {\begin{array}{*{20}{c}} 0&{\beta ''} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {D'}&0 \\ 0&{D''} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{{(zI' - A')}}^{{ - 1}}}}&0 \\ { - {{{(zI'' - A'')}}^{{ - 1}}}B''{{Q}^{{21}}}(z)D'{{{(zI' - A')}}^{{ - 1}}}}&{{{{(zI'' - A'')}}^{{ - 1}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {G'} \\ {G''} \end{array}} \right]\alpha , \\ \end{gathered} $$

which after fulfilling the matrix products takes the form

$$\beta ''W_{{y{\text{nom}}}}^{v}(z)\alpha = \beta ''D''{{(zI'' - A'')}^{{ - 1}}}G''\alpha - \beta ''D''{{(zI'' - A'')}^{{ - 1}}}B''{{Q}^{{21}}}(z)D'{{(zI' - A')}^{{ - 1}}}G'\alpha ,$$

where, taking into account the notation introduced in (1.11), the following value is used:

$$W_{{y{\text{nom}}}}^{{v}}(z) = D''{{(zI'' - A'')}^{{ - 1}}}G'' - D''{{(zI'' - A'')}^{{ - 1}}}B''C_{{{\text{in}}}}^{{''}}{{E}^{{21}}}(z)C_{{{\text{out}}}}^{'}D'{{(zI' - A')}^{{ - 1}}}G.$$
(A.2)

Taking into account notation (4.1) and (4.2), we obtain the equation

$$\beta ''W''(z)C_{{{\text{in}}}}^{{''}}E_{{{\text{nom}}}}^{{21}}(z)C_{{{\text{out}}}}^{'}W'(z)\alpha = \beta ''(W''(z) - W_{{y{\text{nom}}}}^{\user1{v}}(z))\alpha ,$$

which  after  substitution (A.2) takes the form of a two-sided linear equation with respect to the matrix E21(z):

$$\beta ''W''(z)C_{{{\text{in}}}}^{{''}}{{E}^{{21}}}(z)C_{{{\text{out}}}}^{'}W'(z)\alpha = \beta ''W''(z)C_{{{\text{in}}}}^{{{\text{nom}''}}}E_{{{\text{nom}}}}^{{21}}(z)C_{{{\text{out}}}}^{{{\text{nom}'}}}W'(z)\alpha .$$

The solvability conditions for this equation appear in [13] as equalities (4.3) and (4.4), and the solution is determined by formulas (4.5) and (4.6). The theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, A.M., Bronnikov, A.M., Bukov, V.N. et al. Generation of Alternative Connections of Series-Connected Subsystems in a Redundant Equipment Complex. J. Comput. Syst. Sci. Int. 59, 232–244 (2020). https://doi.org/10.1134/S1064230720020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720020021

Navigation