Skip to main content
Log in

Heuristic Solution to the Diffraction Problem on a Superconducting Half-Plane

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—The article presents a rigorous numerical solution, using the Wiener–Hopf method, to the problem of plane wave diffraction in a half-plane with generalized two-sided impedance boundary conditions describing various types of structures, including thin superconducting layers with a thickness comparable to the thickness of the skin layer. Expressions are obtained for the field scattered by the half-plane in the far field. For the rigorous solution, a heuristic formula is constructed that approximately describes the scattered field. It is shown that heuristic relations qualitatively and in many cases quantitatively correctly describe the scattering characteristics of the half-plane. A physical interpretation of the rigorous solution is proposed, based on the obtained heuristic relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Sommerfeld, Math. Ann. 47, 317 (1896).

    Article  MathSciNet  Google Scholar 

  2. E. N. Vasil’ev, Excitation of Bodies of Revolution (Radio iSvyaz’, Moscow, 1987) [in Russian].

  3. E. I. Nefedov and A. T. Fialkovskii, Strip Transmission Lines (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  4. M. Leontovich and M. Levin, Z. Tekh. Fiz. 14, 481 (1944).

    Google Scholar 

  5. T. B. A. Senior, Proc. R. Soc. London, Ser. A 213 (1115), 436 (1952).

    Article  Google Scholar 

  6. T. B. A. Senior, Radio Sci. 10, 645 (1975).

    Article  Google Scholar 

  7. S. E. Bankov, Integrated Microwave Optics (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  8. E. P. Kurushin, E.I. Nefedov, and A. T. Fialkovskii, Diffraction of Electromagnetic Waves on Anisotropic Structures (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  9. S. E. Bankov, J. Commun. Technol. Electron. 58, 974 (2013).

    Article  Google Scholar 

  10. T. B. A. Senior, Radio Sci. 10, 911 (1975).

    Article  Google Scholar 

  11. V. F. Kravchenko, Electromagnetics of Superconducting Structures. Theory, Algorithms and Computing Technique (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  12. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, New York, 2000).

    Book  Google Scholar 

  13. B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon, Oxford, 1958; InostrannayaLiteratura, Moscow, 1962).

  14. D. M. Sazonov, Microwave Circuits and Antennas (Vysshaya Shkola, Moscow, 1988; Mir, Moscow, 1990).

  15. H. Hönl, A. W. Maue, and K. Westpfahl, Handbuch der Physik, Ed. by S. Flügge (Springer-Verlag, Berlin, 1961; Mir, Moscow, 1964),

  16. Y. A. Kravtsov and Ning Yan Zhu, Theory of Diffraction: Heuristic Approaches (Alpha Sci. Int., Oxford, 2010). A. Kravtsov and N. Y. Zhu, Theory of Diffraction: Heuristic Approaches (Alpha Science Int. Ltd, Oxford, 2010).

  17. M. V. Vesnik, The Method of the Generalized Eikonal. New Approaches in the Diffraction Theory (Walter de Gruyter GmbN, Berlin, 2015).

    MATH  Google Scholar 

  18. M. V. Vesnik, Sovrem. Mat. Fundam. Naprav. (SMFN) 6, 32 (2016).

    Google Scholar 

  19. P. Ya. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Sovetskoe Radio, Moscow, 1962; US Air Force Foreign Technology Division, 1-1154, 1962).

  20. M. V. Vesnik, J. Commun. Technol. Electron. 64, 1211 (2019).

    Article  Google Scholar 

  21. C. V. Raman and K. S. Krishnan, Proc. Rou Soc. Lond. A 116, 254 (1927).

    Article  Google Scholar 

  22. J. Shmoys, IRE Trans. on Antennas Propag. 7 (5), 88 (1959).

    Article  Google Scholar 

  23. H. M. El-Sallabi, I. T. Rekanos, and P. Vainikainen, IEEE Antennas & Wireless Propag. Lett. 1, 165 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. E. Bankov or M. V. Vesnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankov, S.E., Vesnik, M.V. & Kravchenko, V.F. Heuristic Solution to the Diffraction Problem on a Superconducting Half-Plane. J. Commun. Technol. Electron. 65, 398–405 (2020). https://doi.org/10.1134/S1064226920040014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920040014

Navigation