Skip to main content
Log in

Fast Acquisition Scheme of the Spread Spectrum Signals for Satellite Communications

  • THEORY AND METHODS OF SIGNAL PROCESSING
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A four-channel parallel acquisition scheme combining partial matched filters and fast Fourier transforms (PMF-FFT) is proposed for the fast acquisition of the spread spectrum signals in satellite communication terminals installed into the offshore buoys with the high-dynamic movement, which is used tofinish data communication missions between the buoys and the satellite. Compared with traditional code phase FFT scheme, the new scheme reduces the maximum acquisition time to 26.5% and the maximum computation amount to 46.9%. It also improves about 4 times in the frequency resolution and 1.6 dB in the receiving sensitivity at the expense of computation complexity compared to PMF-FFT scheme. The parallel PMF-FFT scheme greatly reduces scallop loss, thus ensuring acquisition sensitivity. The parallel PMF-FFT scheme within the satellite communication terminal can ensure the fast and stable tracking of satellite signal by the violently moving antenna within 20 ms under level-4 sea state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Srinivasan, S. Zacharia, T. Sudhakar, and M. A. Atmanand, in Proc. OCEANS-2016 MTS/IEEE, Monterey, California, USA, Sept. 19−23 2016 (IEEE, New York, 2016).

  2. G. Vengatesan, M. A. Muthiah, J. S. Upadhyay, N. Sundaravadivelu, R. Sundar, and R. Venkatesan, in Proc. Meet. 2013 Ocean Electronics (SYMPOL), Kochi, India, Oct. 23−25, 2013 (SYMPOL, 2013).

  3. H. Yang, J. Coastal Res. 85 (SI), 1206 (2018).

  4. H. O. Berteaux, Buoy Engineering (Wiley Intersci., New York, 1976).

    Google Scholar 

  5. Y. Zhuang and D.-C. Wan, Int. J. Comp. Meth-Sing 16 (06), 1840022 (2017).

    Google Scholar 

  6. C. Meinig, S. Stalin, A. I. Nakamura, and H. B. Milburn, “Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure,” (NOAA, 2005). http://www.ndbc.noaa.gov/dart/dart_ii_description_ 6_4_05.pdf.

  7. F. Yu, X. Hu, S. Dong, G. Liu, Y. Zhao, and G. Chen, J. Mar. Sci. Tech-Japan 23 (1), 188 (2018).

    Google Scholar 

  8. G. Xu, Y. Shi, X. Sun, and W. Shen, “Internet of Things in Marine Environment Monitoring: A Review,” Sensors 19, 1711, (2019).

    Article  Google Scholar 

  9. G. Xu, W. Shen, and X. Wang, Sensors 14, 16932 (2014).

    Article  Google Scholar 

  10. C. Tang, S. J. Lu, and J. Zhu, J. Commun. Technol. 49, 729 (2016).

    Google Scholar 

  11. Y. Zhu, J. Ocean Technol. 03, 5 (2002).

    Google Scholar 

  12. SATPRO. “Shipborne SOTM antenna,” Xi’an, Shaanxi, China. (2019). http://www.satpro.cn/product1_2.asp?id=545&page=5.

  13. A. A. Mulla and P. N. Vasambekar, Annu. Rev. Control. 41, 47 (2016).

    Article  Google Scholar 

  14. N. Katayama, N. Yoshimura, H. Takamatsu, S. Kitazume, Y. Takahara, M. Lewis, et al., in Wireless and Satellite Systems, No. 11 (2017).

  15. C. Chen and Y. Wang, in 2013 5th Int. Conf. on Intelligent Human-Machine Systems and Cybernetics, Zhejiang Univ. Hangzhou, China 2013 (Zhejiang Univ., Hangzhou, China, 2013), p. 490.

  16. CCSDS, Radio Frequency and Modulation Systems-Part 1 Earth Stations and Spacecraft (CCSDS, Washington, 2018).

  17. J. R. P. Gordon and M. S. Sascha, IEEE Trans. Veh. Technol. 50, 1549 (2001).

    Article  Google Scholar 

  18. W. Wang and D. J. Xu, J. Harbin Engineering Univ. 06, 646 (2003).

  19. W. Guo, X. Niu, C. Guo, and J. Cui, Aerosp. Sci. Technol. 61, 66 (2017).

    Article  Google Scholar 

Download references

Funding

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, grant no. XDA22000000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H., Liang, X.F., Shen, M. et al. Fast Acquisition Scheme of the Spread Spectrum Signals for Satellite Communications. J. Commun. Technol. Electron. 65, 449–456 (2020). https://doi.org/10.1134/S1064226920040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920040063

Navigation