Skip to main content
Log in

Effect of Geomagnetic Field on Motion of Passive Conductive Satellites

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

In this paper we analyze theoretically the effect of geomagnetic field on rotation of passive conductive satellites of a spherical shape such as Russian-Australian satellite WESTPAC or Russian satellite Larets. The main cause of this effect is the generation of eddy currents and satellite magnetic moment, which interact with the Earth’s magnetic field. The analytical solutions have been derived for orbital and intrinsic magnetic moments of satellite, which result from a translatory motion of an Earth-orbiting satellite and from a satellite spin around axes passing through its center of mass. An arbitrary relation between skin layer depth and satellite radius is assumed. Both a torque acting on satellite in geomagnetic field and the changes in its angular velocity are derived. The satellite orbiting the Earth in a circular orbit with an arbitrary tilt of the orbital plane is studied having regard to rotation of the vector of geomagnetic dipole moment. A characteristic time it takes for the angular velocity of the satellite to decrease exponentially is estimated. Peculiarities of residual irregular vibrations of the satellite angular velocity are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ablyazov, M.K., Surkov, V.V., and Chernov, A.S., Distortion of an external magnetic field by an expanding plasma sphere located in a slightly conductive semispace, J. Appl. Mech. Tech. Phys., 1988, vol. 29, no. 6, pp. 778–784.

    Article  Google Scholar 

  2. Beletsky, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Motion of an Artificial Satellite about Its Center of Mass), Moscow: Nauka, 1965; Jerusalem: Israel program for scientific translation, 1966.

  3. Candini, G.P., Piergentili, F., and Santoni, F., Miniaturized attitude control system for nanosatellites, Acta Astronaut., 2012, vol. 81, no. 1, pp. 325–334.

    Article  Google Scholar 

  4. Guo, J., Bouwmeester, J., and Gill, E., In-orbit results of Delfi-n3Xt: Lessons learned and move forward, Acta Astronaut., 2016, vol. 121, pp. 39–50.

    Article  Google Scholar 

  5. Ivanov, D., Ovchinnikov, M., Penkov, V., Roldugin, D., Doronin, D., and Ovchinnikov, A., Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties, Acta Astronaut., 2017, vol. 132, pp. 103–110.

    Article  Google Scholar 

  6. Kucharski, D., Kirchner, G., Lim, H.-C., and Koidl, F., New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data, Adv. Space Res., 2013, vol. 51, no. 5, pp. 912–916. https://doi.org/10.1016/j.asr.2012.10.008

    Article  Google Scholar 

  7. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 2: Teoriya polya (Theory of Fields), Moscow: Fizmatlit, 1960; New York: Pergamon, 1971.

  8. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit, 1982; New York: Pergamon, 1960.

  9. Müncheberg, S., Krischke, M., and Lemke, N.M.K., Nanosatellites and micro systems technology—capabilities, limitations and applications, Acta Astronaut., 1966, vol. 39, nos. 9–12, pp. 799–808. https://doi.org/10.1016/S0094-5765(97)00063-5

    Article  Google Scholar 

  10. Ovchinnikov, M.Yu., Roldugin, D.S., Tkachev, S.S., Study of the accuracy of active magnetic damping algorithm, Preprint of Keldysh Institute of Applied Mathematics, Russ. Acad. Sci., Moscow, 2016, no. 133. https://doi.org/10.20948/prepr-2016-133-e

  11. Ovchinnikov, M.Yu., Penkov, V.I., Roldugin, D.S., and Pichuzhkina, A.V., Geomagnetic field models for satellite angular motion studies, Acta Astronaut., 2018, vol. 144, pp. 171–180.

    Article  Google Scholar 

  12. Petrukovich, A.A. and Nikiforov, O., Small satellites for scientific research, Rocket-Space Dev.Eng. Inf. Syst., 2016, vol. 3, no. 4, pp. 22–31. https://doi.org/10.17238/issn2409-0239.2016.4.22

    Article  Google Scholar 

  13. Pichuzhkina, A.V. and Roldugin, D.S., Geomagnetic field models for satellite angular motion Preprint of Keldysh Institute of Applied Mathematics, Russ. Acad. Sci., Moscow, 2016, no. 87. https://doi.org/10.20948/prepr-2016-87-e

  14. Rosenstock, H.B., The effect of the Earth’s magnetic field on the spin of the satellite, Astronaut. Acta, 1957, vol. 3, no. 3, pp. 215–226.

    Google Scholar 

  15. Rubis A. Larets and BLITS are nanosatellites of GLONASS, Vozdushno-Kos. Sfera, 2016, nos. 3–4, pp. 88–89.

  16. Sadov, Yu.A., Periodic motion of a satellite with a magnetic damper in the plane of a circular orbit, Cosmic Res., 1969, vol. 7, no. 1, pp. 51–60.

    Google Scholar 

  17. Samotokin, B., Shostachuk, D., Korobiichuka, I., Kachniarzb, M., and Nowicki, M., The satellites orientation method using a torque magnetic drive, Acta Phys. Pol. A, 2018, vol. 133, no. 3, pp. 722–724. https://doi.org/10.12693/APhysPolA.133.722

    Article  Google Scholar 

  18. Santoni, F. and Zelli, M., Passive magnetic attitude stabilization of the UNISAT-4 microsatellite, Acta Astronaut., 2009, vol. 65, nos. 5–6, pp. 792–803.

    Article  Google Scholar 

  19. Surkov, V.V., and Mozgov, K.S., Effects of the action of particle fluxes and geomagnetic variations on low-orbital spherical satellites, Cosmic Res., 2019, vol. 57, no. 4, pp. 252–260. https://doi.org/10.1134/S0010952519040075

    Article  Google Scholar 

  20. Vasiliev, V.P., Shargorodsky, V.D., Novikov, S.B., Chubykin, A.A., Parkhomenko, N.N., Sadovnikov, M.A., Progress in laser systems for precision ranging, angle measurements, photometry, and data transfer, in International Laser Ranging Service (ILRS) Fall 2007 Workshop, Grasse, France, 2007.

  21. Vasil’ev, V.P., A way to precision, Ross. Kosmos, 2018, vol. 2, no. 145, pp. 10–14. 2018.

  22. Zonov, Yu.V., On the question of interaction between satellite and the Earth magnetic field, in Iskusstvennye sputniki Zemli (Artificial Satellites of the Earth), AN SSSR, 1959, no. 3, pp. 118–124.

Download references

ACKNOWLEDGMENTS

The author would like to thank Dr. Vladimir P. Vasiliev and Dr. Konstantin S. Mozgov for helpful discussions of the results of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Surkov.

Ethics declarations

This research was partly supported by RFBR, grant no. 18-05-00108.

Additional information

Translated by V. V. Surkov

Appendices

APPENDIX 1

The problem under consideration has axial symmetry due to homogeneity of the vector field \({{\partial }_{t}}{{{\mathbf{B}}}_{e}} = {{\dot {B}}_{{ez}}}{\mathbf{\hat {z}}}{\text{.}}\) Here the dot over the symbol denotes the derivative with respect to time. Whence it follows that all the functions depend on variables \(r{\text{,}}\)\(\theta \) and \(t\) but are independent of azimuthal angle. In such a case it is suitable to seek for the solution of equation (2) for geomagnetic field perturbations in the form (r < a):

$${{{\mathbf{b}}}_{2}}\left( {{\mathbf{r}},t} \right) = {\mathbf{\hat {r}}}{{b}_{r}}\left( {r,t} \right)\cos \theta - {\mathbf{\hat {\theta }}}{{b}_{\theta }}\left( {r,t} \right)\sin \theta ,$$
(A1.1)

where \({\mathbf{\hat {r}}}\) and \({\mathbf{\hat {\theta }}}\) are the unit vectors while \({{b}_{r}}\left( {r,t} \right)\) and \({{b}_{\theta }}\left( {r,t} \right)\) are unknown functions. Substituting equation (A1.1) for \({{{\mathbf{b}}}_{2}}\) into vector equation (2), taking into account that \({{\partial }_{t}}{{{\mathbf{B}}}_{e}} = {{\dot {B}}_{{ez}}}\left( {{\mathbf{\hat {r}}}\cos \theta - {\mathbf{\hat {\theta }}}\sin \theta } \right)\) and rearranging, we are thus left with the set:

$${{\partial }_{t}}{{b}_{r}} + {{\dot {B}}_{{ez}}} = D\left\{ {\partial _{{rr}}^{2}{{b}_{r}} + \frac{{2{{\partial }_{r}}{{b}_{r}}}}{r} - \frac{{4\left( {{{b}_{r}} - {{b}_{\theta }}} \right)}}{{{{r}^{2}}}}} \right\},$$
(A1.2)
$${{\partial }_{t}}{{b}_{\theta }} + {{\dot {B}}_{{ez}}} = D\left\{ {\partial _{{rr}}^{2}{{b}_{\theta }} + \frac{{2{{\partial }_{r}}{{b}_{\theta }}}}{r} + \frac{{2\left( {{{b}_{r}} - {{b}_{\theta }}} \right)}}{{{{r}^{2}}}}} \right\}.$$
(A1.3)

Equation \(\nabla \cdot {\mathbf{b}} = {\mathbf{0}}\) takes form:

$${{\partial }_{r}}{{b}_{r}} + \frac{{2\left( {{{b}_{r}} - {{b}_{\theta }}} \right)}}{r} = 0.$$
(A1.4)

In order to solve the set of equations (A1.2)(A1.4) we apply a technique used by Ablyazov et al (1988). To do this let us introduce the new unknown functions: \(f = {{b}_{r}} - {{b}_{\theta }}\) and \(g = {{b}_{r}} + 2{{b}_{\theta }}{\text{.}}\) Rearranging equations (A1.2)(A1.4) we arrive at

$${{\partial }_{t}}g = D\left( {\partial _{{rr}}^{2}g + \frac{{2{{\partial }_{r}}g}}{r}} \right) - 3{{\dot {B}}_{{ez}}},$$
(A1.5)
$${{\partial }_{t}}f = D\left( {\partial _{{rr}}^{2}f + \frac{{2{{\partial }_{r}}f}}{r} - \frac{{6f}}{{{{r}^{2}}}}} \right),$$
(A1.6)
$${{\partial }_{r}}g + 2{{\partial }_{r}}f + {{6f} \mathord{\left/ {\vphantom {{6f} r}} \right. \kern-0em} r} = 0.$$
(A1.7)

In order to disregard the ball magnetization in the geomagnetic field, the magnetic permeability of the ball is assumed to be unity. From the requirement of the magnetic field continuity at the ball surface it follows that \({{{\mathbf{b}}}_{1}}\left( {a,t} \right) = {{{\mathbf{b}}}_{2}}\left( {a,t} \right){\text{.}}\) Substituting equations (3) and (A1.1) for \({{{\mathbf{b}}}_{1}}\) and \({{{\mathbf{b}}}_{2}}\) into the above relationship, we come to the following boundary conditions

$$g\left( {a,t} \right) = 0,\,\,\,\,f\left( {a,t} \right) = \frac{{3{{\mu }_{0}}{{M}_{{{\text{orb}}}}}\left( t \right)}}{{4\pi {{a}^{3}}}}.$$
(A1.8)

In the absence of any perturbations at the initial time, the initial conditions of the problem are as follows \(g\left( {r,0} \right) = f\left( {r,0} \right) = 0.\) The proof of the fact that the set of equations (A1.5)(A1.7) under the above boundary and initial conditions has a unique solution can be found in (Ablyazov et al., 1988).

The solution of equation (A1.5), which is bounded at \(r = 0\) and subjected to the boundary condition (A1.8), can be expressed in a power series of the functions \(\sin \left( {{{\pi nr} \mathord{\left/ {\vphantom {{\pi nr} a}} \right. \kern-0em} a}} \right)\) constituting a full set of the orthonormal basis functions for our boundary-value problem:

$$g\left( {r,t} \right) = \frac{1}{r}\sum\limits_{n = 1}^\infty {{{\gamma }_{n}}\left( t \right)\sin \frac{{\pi nr}}{a}} ,$$
(A1.9)

where \({{\gamma }_{n}}\left( t \right)\) are unknown functions. In a similar fashion we can expend the function \({{\dot {B}}_{{ez}}}\) in a power series of the same basis functions despite \({{\dot {B}}_{{ez}}}\) is independent of \(r{\text{.}}\) Substituting this power series and equation (A1.9) into equation (A1.5) yields

$$\frac{{d{{\gamma }_{n}}}}{{dt}} + {{\lambda }_{n}}{{\gamma }_{n}} = \frac{{6a{{{\dot {B}}}_{{ez}}}}}{{\pi n}}{{\left( { - 1} \right)}^{n}},\,\,\,\,{{\lambda }_{n}} = \frac{{{{\pi }^{2}}{{n}^{2}}D}}{{{{a}^{2}}}}.$$
(A1.10)

The solution of equation (A1.10) under zero initial conditions is given by

$${{\gamma }_{n}} = \frac{{6a}}{{\pi n}}{{\left( { - 1} \right)}^{n}}\int\limits_0^t {\exp \left\{ {{{\lambda }_{n}}\left( {t{\kern 1pt} ' - t} \right)} \right\}{{{\dot {B}}}_{{ez}}}\left( {t{\kern 1pt} '} \right)dt{\kern 1pt} '} .$$
(A1.11)

Here we have taken into account that \({{\dot {B}}_{{ez}}}\) is not a constant but, generally speaking, a slowly varying function of time. Substituting equation (A1.11) for \({{\gamma }_{n}}\) into equation (A1.9), we obtain the function \(g\left( {r,t} \right){\text{.}}\) In order to find other unknown function \(f\left( {r,t} \right)\) we use equation (A1.7), whence it follows that

$$\begin{gathered} f\left( {r,t} \right) = - \frac{{{{a}^{2}}}}{{2{{\pi }^{2}}{{r}^{3}}}}\sum\limits_{n = 1}^\infty {\frac{{{{\gamma }_{n}}\left( t \right)}}{{{{n}^{2}}}}\left\{ {\left( {\frac{{{{\pi }^{2}}{{n}^{2}}{{r}^{2}}}}{{{{a}^{2}}}} - 3} \right)} \right.} \\ \left. {^{{^{{^{{^{{}}}}}}}} \times \sin \frac{{\pi nr}}{a} + \frac{{3\pi nr}}{a}\cos \frac{{\pi nr}}{a}} \right\}. \\ \end{gathered} $$
(A1.12)

Substituting equation (A1.12) for \(f\left( {a,t} \right)\) into the boundary conditions (A1.8), we come to equation (4) for the effective magnetic moment of the ball.

APPENDIX 2

For the sake of convenience, the derivative in time will be further denoted by a point. From equations (8) and (9) it then follows that the magnetic field components in the coordinate system fixed to the satellite orbit plane have the form:

$$\begin{gathered} \frac{{{{B}_{{ex}}}}}{{{{B}_{*}}}} = \frac{{3{{x}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\left[ {\cos \alpha \cos \beta \cos {{\varphi }_{e}} + \sin \alpha \sin \beta } \right] \\ - \,\,\frac{{3{{y}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\cos \alpha \sin {{\varphi }_{e}} + \left( {\frac{{3z_{m}^{2}}}{{{{R}^{2}}}} - 1} \right) \\ \times \,\,\left[ {\cos \alpha \sin \beta \cos {{\varphi }_{e}} - \sin \alpha \cos \beta } \right], \\ {{B}_{*}} = - \frac{{{{\mu }_{0}}{{M}_{e}}}}{{4\pi {{R}^{3}}}},\,\,\,\,\frac{{{{B}_{{ey}}}}}{{{{B}_{*}}}} = \frac{{3{{x}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\cos \beta \sin {{\varphi }_{e}} \\ + \,\,\frac{{3{{y}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\cos {{\varphi }_{e}} + \left( {\frac{{3z_{m}^{2}}}{{{{R}^{2}}}} - 1} \right)\sin \beta \sin {{\varphi }_{e}}, \\ \frac{{{{B}_{{ez}}}}}{{{{B}_{*}}}} = \frac{{3{{x}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\left[ {\sin \alpha \cos \beta \cos {{\varphi }_{e}} - \cos \alpha \sin \beta } \right] \\ - \,\,\frac{{3{{y}_{m}}{{z}_{m}}}}{{{{R}^{2}}}}\sin \alpha \sin {{\varphi }_{e}} + \left( {\frac{{3z_{m}^{2}}}{{{{R}^{2}}}} - 1} \right) \\ \times \,\,\left[ {\sin \alpha \sin \beta \cos {{\varphi }_{e}} + \cos \alpha \cos \beta } \right], \\ \end{gathered} $$
(A2.1)

where \({{\varphi }_{e}} = {{\varphi }_{e}}\left( t \right)\) and the functions \({{x}_{m}}\left( t \right){\text{,}}\)\({{y}_{m}}\left( t \right)\) and \({{z}_{m}}\left( t \right)\) are given by equation (11). The time derivatives of equations (A2.1) are given by:

$$\begin{gathered} \frac{{{{{\dot {B}}}_{{ex}}}}}{{{{B}_{*}}}} = \frac{3}{{{{R}^{2}}}}\left\{ {\left( {{{{\dot {x}}}_{m}}{{z}_{m}} + {{x}_{m}}{{{\dot {z}}}_{m}}} \right)_{{_{{}}}}^{{}}} \right. \\ \times \,\,\left[ {\cos \alpha \cos \beta \cos {{\varphi }_{e}} + \sin \alpha \sin \beta } \right] + 2{{z}_{m}}{{{\dot {z}}}_{m}} \\ \times \,\,\left[ {\cos \alpha \sin \beta \cos {{\varphi }_{e}} - \sin \alpha \cos \beta } \right] \\ - \,\,\left( {{{{\dot {y}}}_{m}}{{z}_{m}} + {{y}_{m}}{{{\dot {z}}}_{m}}} \right)\cos \alpha \sin {{\varphi }_{e}} - {{\omega }_{e}}\cos \alpha \\ \times \,\,\left[ {{{x}_{m}}{{z}_{m}}\cos \beta \sin {{\varphi }_{e}} + {{y}_{m}}{{z}_{m}}\cos {{\varphi }_{e}}} \right. \\ \left. {\left. { + \,\,\left( {z_{m}^{2} - {{{{R}^{2}}} \mathord{\left/ {\vphantom {{{{R}^{2}}} 3}} \right. \kern-0em} 3}} \right)\sin \beta \sin {{\varphi }_{e}}} \right]} \right\}, \\ \end{gathered} $$
$$\begin{gathered} \frac{{{{{\dot {B}}}_{{ey}}}}}{{{{B}_{*}}}} = \frac{3}{{{{R}^{2}}}}\left\{ {\left( {{{{\dot {x}}}_{m}}{{z}_{m}} + {{x}_{m}}{{{\dot {z}}}_{m}}} \right)\cos \beta \sin {{\varphi }_{e}}_{{_{{}}}}^{{}}} \right. \\ - \left( {{{{\dot {y}}}_{m}}{{z}_{m}} + {{y}_{m}}{{{\dot {z}}}_{m}}} \right)\cos {{\varphi }_{e}} + 2{{z}_{m}}{{{\dot {z}}}_{m}}\sin \beta \sin {{\varphi }_{e}} \\ + \,\,{{\omega }_{e}}\left[ {{{x}_{m}}{{z}_{m}}\cos \beta \cos {{\varphi }_{e}} + {{y}_{m}}{{z}_{m}}\sin {{\varphi }_{e}}} \right. \\ + \,\,\left. {\left. {\left( {z_{m}^{2} - {{{{R}^{2}}} \mathord{\left/ {\vphantom {{{{R}^{2}}} 3}} \right. \kern-0em} 3}} \right)\sin \beta \cos {{\varphi }_{e}}} \right]} \right\}, \\ \end{gathered} $$
(A2.2)
$$\begin{gathered} \frac{{{{{\dot {B}}}_{{ez}}}}}{{{{B}_{*}}}} = \frac{3}{{{{R}^{2}}}}\left\{ {\left( {{{{\dot {x}}}_{m}}{{z}_{m}} + {{x}_{m}}{{{\dot {z}}}_{m}}} \right) \times _{{}}^{{}}} \right. \\ \times \,\,\left[ {\sin \alpha \cos \beta \cos {{\varphi }_{e}} - \cos \alpha \sin \beta } \right] \\ - \,\,\left( {{{{\dot {y}}}_{m}}{{z}_{m}} + {{y}_{m}}{{{\dot {z}}}_{m}}} \right)\sin \alpha \sin {{\varphi }_{e}} + 2{{z}_{m}}{{{\dot {z}}}_{m}} \\ \times \,\,\left[ {\sin \alpha \sin \beta \cos {{\varphi }_{e}} + \cos \alpha \cos \beta } \right] - {{\omega }_{e}}\sin \alpha \\ \times \,\,\left[ {{{y}_{m}}{{z}_{m}}\cos {{\varphi }_{e}} + {{x}_{m}}{{z}_{m}}\cos \beta \sin {{\varphi }_{e}}} \right. \\ \left. { + \,\,\left( {z_{m}^{2} - {{{{R}^{2}}} \mathord{\left/ {\vphantom {{{{R}^{2}}} 3}} \right. \kern-0em} 3}} \right)\left. {\sin \beta \sin {{\varphi }_{e}}} \right]} \right\}, \\ \end{gathered} $$

where

$$\begin{gathered} {{{\dot {x}}}_{m}} = R\left[ {\dot {f}\cos \beta - {{\omega }_{{{\text{orb}}}}}\sin \alpha \sin \beta \sin {{\psi }_{{{\text{orb}}}}}} \right], \\ {{{\dot {y}}}_{m}} = \frac{R}{2}\left[ {\left( {{{\omega }_{{{\text{orb}}}}} - {{\omega }_{e}}} \right)\left( {1 + \cos \alpha } \right)\cos \left( {{{\psi }_{{{\text{orb}}}}} - {{\varphi }_{e}}} \right) + } \right. \\ \left. { + \,\,\left( {{{\omega }_{{{\text{orb}}}}} + {{\omega }_{e}}} \right)\left( {1 - \cos \alpha } \right)\cos \left( {{{\psi }_{{{\text{orb}}}}} + {{\varphi }_{e}}} \right)} \right], \\ {{{\dot {z}}}_{m}} = R\left[ {\dot {f}\sin \beta + {{\omega }_{{{\text{orb}}}}}\sin \alpha \cos \beta \sin {{\psi }_{{{\text{orb}}}}}} \right], \\ \dot {f} = \frac{1}{2}\left[ {\left( {{{\omega }_{{{\text{orb}}}}} + {{\omega }_{e}}} \right)\left( {1 - \cos \alpha } \right)\sin \left( {{{\psi }_{{{\text{orb}}}}} + {{\varphi }_{e}}} \right) - } \right. \\ \left. { - \,\,\left( {{{\omega }_{{{\text{orb}}}}} - {{\omega }_{e}}} \right)\left( {1 + \cos \alpha } \right)\sin \left( {{{\psi }_{{{\text{orb}}}}} - {{\varphi }_{e}}} \right)} \right]. \\ \end{gathered} $$
(A2.3)

Substituting equations (A2.1)(A2.3) into equation (10), we obtain the torque of Ampere force.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surkov, V.V. Effect of Geomagnetic Field on Motion of Passive Conductive Satellites. Geomagn. Aeron. 60, 192–204 (2020). https://doi.org/10.1134/S0016793220020152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220020152

Navigation