Skip to main content
Log in

Dynamics of the Mesosphere and Lower Thermosphere Based on Results of Observations on the SURA Facility

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of studies of atmospheric dynamics in the altitude range of 60–130 km are presented based on measurements of the velocity of vertical plasma motion, the temperature and density of the neutral component, and the turbopause height. The measurements were carried via resonant scattering of radio waves by artificial periodic inhomogeneities of the ionospheric plasma. The method is based on ionospheric perturbation by powerful high-frequency radio emission, the creation of periodic inhomogeneities in the field of a standing wave, which forms upon reflection from the ionosphere of a powerful radio wave emitted into the zenith, and the location of inhomogeneities by test radio waves. The parameters of the neutral component, the turbulent velocity, and the height of the turbopause are determined from the relaxation time of the signal scattered by the inhomogeneities after the end of the ionospheric impact. The measurement of the phase of the scattered signal makes it possible to determine the rate of vertical plasma motion. The experiments were carried out on a SURA heating facility (56.15° N; 46.11° E). The paper presents and analyzes the time–altitude dependences of the vertical velocity and temperature, which are largely due to the propagation of atmospheric waves during various natural phenomena. The results of determination of the turbopause height and turbulent velocity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Andreeva, L.A., Klyuev, O.F., Portnyagin, Yu.I., and Khanan’yan, A.A., Issledovanie protsessov v verkhnei atmosfere metodom iskusstvennykh oblakov (Study of Upper Atmospheric Processes by the Artificial Cloud Method), Leningrad: Gidrometeoizdat, 1991.

  2. Bakhmet’eva, N.V., Belikovich, V.V., Benediktov, E.A., Bubukina, V.N., Goncharov, N.P., and Ignat’ev, Yu.A., Seasonal and diurnal variations of vertical motion velocities within mesosphere and lower thermosphere near Nizhnii Novgorod, Geomagn. Aeron. (Engl. Transl.), 1996a, vol. 36, no. 5, pp. 675–681.

  3. Bakhmet’eva, N.V., Belikovich, V.V., and Korotina, G.S., Determination of Turbulent Velocities with the Use of Artificial Periodic Inhomogeneities, Geomagn. Aeron. (Engl. Transl.), 1996b, vol. 36, no. 5, pp. 724–726.

  4. Bakhmet’eva, N.V., Belikovich, V.V., Grigor’ev, G.I., and Tolmacheva, A.V., Effect of acoustic gravity waves on variations in the lower-ionosphere parameters as observed using artificial periodic inhomogeneities, Radiophys. Quantum Electron., 2002, vol. 45, no. 3, pp. 233–242.

    Google Scholar 

  5. Bakhmet’eva, N.V., Belikovich, V.V., Kagan, L.M., and Ponyatov, A.A., Sunset–sunrise characteristics of sporadic layers of ionization in the lower ionosphere observed by the method of resonance scattering of radio waves from artificial periodic inhomogeneities of the ionospheric plasma, Radiophys. Quantum Electron., 2005, vol. 48, no. 1, pp. 14–28.

    Article  Google Scholar 

  6. Bakhmet’eva, N.V., Belikovich, V.V., Bubukina, V.N., Vyakhirev, V.D., Kalinina, E.E., Komrakov, G.P., and Tolmacheva, A.V., Results of determining the electron number density in the ionospheric E region from relaxation times of artificial periodic irregularities of different scales, Radiophys. Quantum Electron., 2008, vol. 51, no. 6, pp. 431–437.

    Article  Google Scholar 

  7. Bakhmet’eva, N.V., Belikovich, V.V., Egerev, M.N., and Tolmacheva, A.V. Artificial periodic irregularities, wave phenomena in the lower ionosphere and the sporadic E-layer, Radiophys. Quantum Electron., 2010a, vol. 53, no. 9, pp. 77–90.

    Google Scholar 

  8. Bakhmet’eva, N.V., Grigor’ev, G.I., and Tolmacheva, A.V., Artificial periodic irregularities, hydrodynamic instabilities, and dynamic processes in the mesosphere–lower thermosphere, Radiophys. Quantum Electron., 2010b, vol. 53, no. 11, pp. 623–637.

    Article  Google Scholar 

  9. Bakhmetieva, N.V., Bubukina, V.N., Vyakhirev, V.D., Grigoriev, G.I., Kalinina, E.A., and Tolmacheva, A.V., The results of comparison of vertical motion velocity and neutral atmosphere temperature at the lower thermosphere heights, Proc. 5th Int. Conf. Atmosphere, Ionosphere, Safety, Kaliningrad, 2016, pp. 197–202.

  10. Bakhmet’eva, N.V., Vyakhirev, V.D., Kalinina, E.E., and Komrakov, G.P., Earth’s lower ionosphere during partial solar eclipses according to observations near Nizhny Novgorod, Geomagn. Aeron. (Engl. Transl.), 2017a, vol. 57, no. 1, pp. 58–71.

  11. Bakhmetieva, N.V., Bubukina, V.N., Vyakhirev, V.D., Grigoriev, G.I., Kalinina, E.E., and Tolmacheva, A.V., The results of comparison of vertical motion velocity and neutral atmosphere temperature at the lower thermosphere heights, Russ. J. Phys. Chem. B., 2017b, vol. 11, no. 6, pp. 1017–1023.

    Article  Google Scholar 

  12. Bakhmet’eva, N.V., Bubukina, V.N., Vyakhirev, V.D., Kalinina, E.E., and Komrakov, G.P., Response of the lower ionosphere to the partial solar eclipses of August 1, 2008 and March 20, 2015 based on observations of radio-wave scattering by the ionospheric plasma irregularities, Radiophys. Quantum Electron., 2017c, vol. 59, no. 10, pp. 782–793.

    Article  Google Scholar 

  13. Bakhmet’eva, N.V., Grigoriev, G.I., Tolmacheva, A.V., and Kalinina, E.E., Atmospheric turbulence and internal gravity waves examined by the method of artificial periodic irregularities, Russ. J. Phys. Chem. B., 2018, vol. 12, no. 3, pp. 510–521.

    Article  Google Scholar 

  14. Belikovich, V.V. and Benediktov, E.A., Influence of atmospheric turbulence on the relaxation of a signal scattered by artificial periodic inhomogeneities, Geomagn. Aeron., 1995, vol. 35, no. 2, pp. 91–99.

    Google Scholar 

  15. Belikovich, V.V., Benediktov, E.A., Tolmacheva, A.V., and Bakhmet’eva, N.V., Issledovanie ionosfery s pomoshch’yu iskusstvennykh periodicheskikh neodnorodnostei (Study of the Ionosphere using Artificial Periodic Inhomogeneities), N. Novgorod: IPF RAN, 1999.

  16. Belikovich, V.V., Benediktov, E.A., Tolmacheva, A.V., and Bakhmet’eva, N.V., Ionospheric Research Using Artificial Periodic Irregularities, Katlenburg-Lindau, Germany: Copernicus, 2002.

    Google Scholar 

  17. Belikovich, V.V., Bakhmet’eva, N.V., Kalinina, E.E., and Tolmacheva, A.V., A new method for determination of the electron number density in the E region of the ionosphere from relaxation times of artificial periodic inhomogeneities, Radiophys. Quantum Electron., 2006, vol. 49, no. 9, pp. 699–674.

    Article  Google Scholar 

  18. Borchevkina, O.P. and Karpov, I.V., Observations of variations in total electron content in the solar terminator region in the ionosphere, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2018, vol. 15, no. 1, pp. 299–305.

    Article  Google Scholar 

  19. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.

  20. Danilov, A.D., Kalgin, U.A., and Pokhunkov, A.A., Variation of the turbopause level in the polar regions, Space Res., 1979, vol. 19, no. 83, pp. 173–176.

    Google Scholar 

  21. Fritts, D.C. and Alexander, M.J., Gravity waves dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, no. 1. https://doi.org/10.1029/2001RG000106

  22. Galedin, I.F., Neelov, I.O., and Pakhomov, S.V., Estimates for turbulent diffusivity in the mesosphere obtained by the radiolocation method, Tr. Tsentr. Astrofiz. Obs., 1981, no. 144, pp. 22–27.

  23. Gershman, B.N., Dinamika ionosfernoi plazmy (Dynamics of Atmospheric Plasma), Moscow: Nauka, 1974.

  24. Gershman, B.N., Ignat’ev, Yu.A., and Kamenetskaya, G.Kh., Mekhanizmy obrazovaniya sporadicheskogo sloya Es na raznykh shirotakh (Mechanisms of the Formation of the Sporadic Layer Es at Various Latitudes), Moscow: Nauka, 1976.

  25. Gossard, E.E. and Hook, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975; Moscow: Mir, 1978.

  26. Grigor’ev, G.I., Acoustic–gravity waves in the Earth’s atmosphere (review), Radiophys. Quantum Electron., 1999, vol. 42, no. 1, pp. 1–21.

    Article  Google Scholar 

  27. Haines, K.O., Atmospheric gravity waves, Thermospheric Circulation, Webb, W.L., Ed., Cambridge: MIT, 1972; Moscow: Mir, 1975, pp. 85–99.

  28. Hocking, W.K., Dynamical coupling processes between the middle atmosphere and lower ionosphere, J. Atmos. Terr. Phys., 1996, vol. 58, no. 6, pp. 735–752.

    Article  Google Scholar 

  29. Izmerenie vetra na vysotakh 90–100 km nazemnymi metodami (Measurements at Altitudes of 90–100 km by Ground-Based Methods), Portnyagin, Yu.I. and Sprenger, K., Eds., Leningrad: Gidrometeoizdat, 1978.

    Google Scholar 

  30. Kagan, L.M., Bakhmet’eva, N.V., Belikovich, V.V., and Tolmacheva, A.V., Structure and dynamics of sporadic layers of ionization in the ionospheric e region, Radio Sci., 2002, vol. 37, no. 6, pp. 1106–1123.

    Article  Google Scholar 

  31. Kalgin, Yu.A. and Danilov, A.D., Determination of eddy diffusivity parameters in the mesosphere and lower thermosphere, Geomagn. Aeron., 1993, vol. 33, no. 6, pp. 119–125.

    Google Scholar 

  32. Karimov, K.A., Vnutrennie gravitatsionnye volny v verkhnei atmosfere (Internal Gravity Waves in the Upper Atmosphere), Frunze: Ilim, 1983.

  33. Karpov, I.V. and Kshevetskii, S.P., Formation of large-scale disturbances in the upper atmosphere caused by acoustic gravity wave sources on the Earth’s surface, Geomagn. Aeron. (Engl. Transl.),2014, vol. 54, no. 4, pp. 513–522.

  34. Karpov, I.V., Kshevetskii, S.P., Borchevkina, O.P., Radievskii, A.V., and Karpov, A.I., Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere, Russ. J. Phys. Chem. B, 2016, vol. 35, no. 1, pp. 127–132.

    Article  Google Scholar 

  35. Khanan’yan, A.A., The vertical structure of wind and turbulence in the lower thermosphere of midlatitudes, Issledovanie dinamicheskikh protsessov v verkhnei atmosfer (Study of Dynamical Processes in the Upper Atmosphere), Lysenko, I.A., Ed., Moscow: Gidrometeoizdat, 1985, pp. 59–63.

    Google Scholar 

  36. Kirkwood, S., Seasonal and tidal variations of neutral temperatures and densities in the high latitude lower thermosphere measured by EISCAT, J. Atmos. Terr. Phys., 1996, vol. 58, no. 6, pp. 735–752.

    Article  Google Scholar 

  37. Kokin, G.A. and Pakhomov, S.V., The turbulent regime of region D in the winter of 1983–1984, Geomagn. Aeron., 1986, vol. 26, no. 5, pp. 714–717.

    Google Scholar 

  38. Mathews, J.D., Sporadic E: Current views and recent progress, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 4, pp. 413–435.

    Article  Google Scholar 

  39. Medvedeva, I.V. and Ratovsky, K.G., Comparative analysis of atmospheric and ionospheric variability by measurements of temperature in the mesopause region and peak electron density NmF2, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 217–228.

  40. Offermann, D., Jarisch, M., Oberheide, J., Gusev, O., Wohltmann, I., Russel, III J.M., and Mlynczak, M.G., Global wave activity from upper stratosphere to lower thermosphere: A new turbopause concept, J. Atmos. Sol.–Terr. Phys., 2006, vol. 68, no. 15, pp. 1709–1729.

    Article  Google Scholar 

  41. Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Pertsev, N.N., Temperature variations in the mesopause region according to the hydroxyl-emission observations at midlatitudes, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 230–239.

  42. Schlegel, K., Brekke, A., and Haug, A., Some characteristics of the quiet polar D-region and mesosphere obtained with the partial reflection method, J. Atmos. Terr. Phys., 1977, vol. 40, no. 2, pp. 205–213.

    Article  Google Scholar 

  43. Somsikov, V.M., Solar terminator and dynamic phenomena in the atmosphere: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 707–719.

  44. Tolmacheva, A.V., Grigoriev, G.I., and Bakhmetieva, N.V., The variations of the atmospheric parameters on measurements using the artificial periodic irregularities of plasma, Russ. J. Phys. Chem. B, 2013, vol. 7, no. 5, pp. 663–669.

    Article  Google Scholar 

  45. Tolmacheva, A.V., Bakhmetieva, N.V., Grigoriev, G.I., and Kalinina, E.E., The main results of the long-term measurements of the neutral atmosphere parameters by the artificial periodic irregularities techniques, Adv. Space Res., 2015, vol. 56, no. 6, pp. 1185–1193.

    Article  Google Scholar 

  46. Tolmacheva, A.V., Bakhmetieva, N.V., Grigoriev, G.I., and Egerev, M.N., Turbopause range measured by the method of the artificial periodic irregularities, Adv. Space Res., 2019, vol. 64, no. 10, pp. 1968–1974.

    Article  Google Scholar 

  47. Vlasov, M.N. and Kelley, M.C., Specific features of eddy turbulence in the turbopause region, Ann. Geophys., 2014, vol. 32, pp. 431–442.

    Article  Google Scholar 

  48. Whitehead, J.D., Recent work on mid-latitude and equatorial sporadic-E, J. Atmos. Terr. Phys., 1989, vol. 51, no. 5, pp. 401–424.

    Article  Google Scholar 

Download references

Funding

This study was carried out as part of state task no. 5.8092.2017/8.9 and with the support of the Russian Foundation for Basic Research, project no. 18-05-00293 (to conduct and analyze the results of experiments on the SURA stand in 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bakhmetieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhmetieva, N.V., Vyakhirev, V.D., Grigoriev, G.I. et al. Dynamics of the Mesosphere and Lower Thermosphere Based on Results of Observations on the SURA Facility. Geomagn. Aeron. 60, 96–111 (2020). https://doi.org/10.1134/S001679322001003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322001003X

Navigation