Skip to main content
Log in

Variability of Alunite Quartzite Composition as a Reflection of the Characteristics of Its Genesis

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Based on 5000 analyses of geological prospecting samples from four alunite deposits (Began’, Ukraine; Haft Sanduq, Iran; Bolshaya Kremenyukha and Kachar, Kazakhstan) and 6000 microprobe analyses of alunite, the features of changes in three parameters of alunite quartzite composition have been studied: (1) alunite content, (2) mole fraction of K in alunite, and (3) correspondence of the amount of K and Na to that of alunite sulfur. All three parameters are highly variable. A linear correlation between them has been identified in over half of the exploration workings. This correlation is sometimes very strong, approaching a functional relationship, especially for two: the alunite content and mole fraction of K in alunite. In the first three of the above-mentioned deposits, this correlation is almost always positive, and in the last, it is always negative. In other words, as alunite content increases, it becomes higher-K in the first case and higher-Na in the second case. Alunite quartzite makes up a regular zone of the infiltration metasomatic column of sulfuric acid alteration in aluminosilicate rocks under conditions apparently close to isothermal. However, the highly variable contents of the basic minerals (alunite and quartz) and alunite composition point to a difference between the alunite quartzite formation model and the theoretical model for isothermal infiltration metasomatic rock. According to the theoretical model, the solution and rock compositions mainly change at the boundaries of the metasomatic zone, whereas the rock and mineral compositions are not characterized by significant variations within the zone. During alunite quartzite formation, the solution and rock compositions change not only at the boundaries, but also within the zone due to ongoing oxidation of sulfur compounds in the solution with the sulfate formation. An increasing sulfate concentration leads to the solution becoming supersaturated in relation to alunite and causes its precipitation, with filling of voids and displacement of quartz. Cooling, heating, or a change in the composition of the hydrothermal system solutions lead to temporal variations in the K/Na ratio in precipitated alunite. Alunite formation inside the alunite zone, accompanied by changes in the mole fraction of K in deposited alunite, is the reason for the high variability of the alunite quartzite composition and for the correlation between the alunite content and its mole fraction of K. If the contribution of higher-K alunite to the variability of its total content is higher than that of higher-Na alunite, a positive correlation is likely to appear, otherwise a negative correlation is more probable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. The term “alunite” used in this work is understood as the alunite–natroalunite solid solution.

  2. The induced low-sensitive correlation between SO3 and MFK is due to the difference in the molecular weights of potassium and sodium alunite. The regression coefficient of this correlation (–0.0156) is many times lower than the modulus of the calculated regression coefficients of Eq. (1) in Table 2. This means that the induced correlation has almost no effect on estimating the geochemical correlation of SO3~MFK.

  3. Hereinafter, the letter “f” indicates the production reports kept in the Federal State Institution Rosgeolfond.

REFERENCES

  1. Babaev, I.A. and Zeinalov, M.B., Comparative assessment of alunite deposits of Azerbaijan SSR and Iran, Voprosy mineralogii, petrologii i rudnykh mestorozhdenii Azerbaidzhana (Problems of Mineralogy, Petrology, and Ore Deposits of Azerbaijan), Baku: AN Azerbaidzhan. Respubl., Institut geologii, 1991, pp. 93–105.

  2. Blakey, B.C. and Papangelakis, V.G., A study of solid–aqueous equilibria by the speciation approach in the hydronium alunite–sulfuric acid–water system at high temperatures, Metallurg. Mater. Trans., 1996, vol. 27B, no. 4, pp. 555–566.

    Article  Google Scholar 

  3. Bove, D.J. and Hon, K., Compositional changes induced by hydrothermal alteration at the Red Mountain alunite deposit, Lake City, Colorado, US Geol. Surv. Bull., 1990, no. 1936, pp. 1–21.

  4. Bulakh, A.G. and Bulakh, K.G., Fiziko–khimicheskie svoistva mineralov i komponentov gidrotermal’nykh rastvorov (Physicochemical Properties of Minerals and Components of Hydrothermal Solutions), Leningrad: Nedra, 1978.

  5. Bulakh, A.G., Krivovichev, V.G., and Zolotarev, V.V., Formuly mineralov. Termodinamicheskii analiz v mineralogii i geokhimii (Mineral Formulas: Thermodynamic Analysis in Mineralogy and Geochemistry). St. Petersburg: St. Petesrb. Univ., 1995.

  6. Cherkasov, G.N., Prusevich, A.M., Sukharina, A.N., Golev, V.K, and Donchenko, L.L., Neboksitovoe alyuminievoe syr’e Sibiri (Non-Bauxite Aluminum Raw Material of Siberia), Moscow: Nedra, 1988. 168 s.

  7. Deyell, C.L., Leonardson, R., Rye, R.O., Thompson, J.F., Bissig, T., and Cooke, D.R., Alunite in the Pascua–Lama high–sulfidation deposit: constraints on alteration and ore deposition using stable isotope geochemistry, Econ. Geol., 2005, vol. 100, no. 1, pp. 131–148.

    Article  Google Scholar 

  8. Hannington, M.D., Ronde, C.E.J., and Petersen, S., Sea-floor tectonics and submarine hydrothermal systems, Econ. Geol., 2005, vol. 100, pp. 111–141

    Article  Google Scholar 

  9. Heald, P., Foley, N.K., and Hayba, D.O., Comparative anatomy of volcanic–hosted epithermal deposits: acid–sulfate and adularia–sericite types, Econ. Geol., 1987, vol. 82, no. 1, pp. 1–26.

    Article  Google Scholar 

  10. Hedenquist, J.W., Arribas, A.R., and Gonzalez–Urien, E., Exploration for epithermal gold deposits, Rev. Econ. Geol., 2000, no. 13, pp. 245–277.

  11. Herzig, P.M., Hannington, M.D., and Arribas, A., Jr., Sulfur isotopic composition of hydrothermal precipitates from the Lau back–arc: implications for magmatic contributions to seafloor hydrothermal systems, Miner. Deposita, 1998, vol. 33, no. 3, pp. 226–237.

    Article  Google Scholar 

  12. Holler, H., Experimentelle bildung von alunit–jarosit durch die einwirkung von schwefelsaure auf mineralien und gesteine, Beitr. Zur Miner. Petrol, 1967, vol. 15, no. 4, pp. 309–329.

    Article  Google Scholar 

  13. Inoue, A. and Utada, M., Hydrothermal alteration related to Kuroko mineralization in the Kamikita area, Nothern Honshu, Japan, with special reference to the acid–sulfate alteration, Rept. Geol. Surv. Jap., 1991, vol. 39–48, no. 277.

  14. Ivlev, A.I., Experience in the reconstruction of ore-forming processes of the Turgai magnetite deposits, Ural’sk. Geol. Zh., 2009, no. 5, pp. 1–134.

  15. Kandaurova, A.S., Non-ferrous metals. Alunites, Geologiya SSSR (Geology of the USSR), Moscow: Nedra, 1975, vol. 34, pp. 210–214.

    Google Scholar 

  16. Kashkai, Ch.M., Gruppa alunita i ego strukturnykh analogov (eksperimental’nye i termodinamicheskie issledovaniya) (Group of Alunite and its Structural Analogues: Experimental and Thermodynamic Studies), Baku: Elm, 1977.

  17. Kashkai, M.A., Alunity, ikh genezis i ispol’zovanie (Alunites, their Genesis, and Application), Moscow: Nedra, 1970, vol. 1.

  18. Kawano, M., Shimoda, S., and Tomita, K., Syntheses and high temperature phase transformations of alunite–natroalunite solid solution series, J. Miner. Soc. Jap., 1991, vol. 20, nos. 1–2, pp. 13–23.

    Google Scholar 

  19. Khosseini, M., Rusinov, V.L., Baranova, I.B., Nosik, L.P., and Kul’mina, O.V., Alunite in Tarom Mountains, northwestern Iran, Vestn. Mosk. Gos. Univ., Ser. 4, 1998, no. 1, pp. 30–39.

  20. Kolemaev, V.A. and Kalinina, V.M. Teoriya veroyatnostei i matematicheskaya statistika (Theory of Probability and Mathematical Statistics) Moscow: Knorus, 2013.

  21. Konyshev, A.A. and Aksyuk, A.M., Experimental solubility of quartz in fluoride solutions at 200oC and 50–150 MPa and calculation of contents of possible silica particles, Geologiya, poleznye iskopaemye i geoekologiya severo–zapada Rossii (Geology, Mineral Resources, and Geoecology of Northwestern Russia), Petrozavodsk, 2006, pp. 91–94.

    Google Scholar 

  22. Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zoning), Moscow: Nauka, 1982.

  23. Lager, G.A., Swayze, G.A., Loong, Ch., Rotella, F.J., Richardson, J.W.Jr., and Stoffregen, R.E., Neutron spectroscopic study of synthetic alunite and oxonium–substituted alunite, Can. Mineral., 2001, vol. 39, no. 4, pp. 1131–1138.

    Article  Google Scholar 

  24. Lazarenko, E.K., Lazarenko, E.A., and Malygina, O.A., Carpathian metallogeny, Materialy Komissii mineralogii i geokhimii (Karpato–Balkanskaya geologicheskaya assotsiatsiya) (Proceed. Comission on Mineralogy and Geochemistry. Carpathian–Balkan Geological Association), 1973, no. 2, pp. 5–98.

  25. Leie, Yu.A., Klitchenko, M.A., Avgitov, A.K., Tikhonenkov, E.P., Lyubarskaya, G.A., Andreev, P.I., Bykov, Yu.A., and Lyushnya, L.M., Alunity Zakarpat’ya (Alunites of Transcarpathia), Moscow: Nedra, 1971.

  26. Makarova, N.V. and Trofimets, V.Ya., Statistika v Excel. Uchebnoe posobie (Statistics in Excel. A Textbook), Moscow: Finansy i statistika, 2002.

  27. Marshall, W.L. and Chen, C.–T.A., Amorphous silica solubilities – VI. Postulated sulfate–silicic acid solution complex, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 3, pp. 367–370.

    Article  Google Scholar 

  28. Mikhailov, B.M., Volcanogenic–sedimentary genesis of the Zaglik alunite deposit, Lesser Caucasus, Litol.Polezn. Iskop., 1978, no. 6, pp. 77–86.

  29. Mishin, L.F. and Berdnikov, N.V., Vtorichnye kvartsity i ikh rudonosnost' (Secondary Quartzites and their Ore Potential), Vladivostok: Dal’nauka, 2003.

  30. Nalimov, V.V., Primenenie matematicheskoi statistiki pri analize veshchestva (Application of Mathematical Statistics in Analyzing Matter), Moscow: Fizmatgiz, 1960.

  31. Nielsen, U.G., Grey, C.P., Majzlan, J., Phillips, B., and Ziliox, M., Characterization of defects and the local structure in natural and synthetic alunite (K, Na, H3O)Al3 (SO4)(OH)6 by multi-nuclear solid-state NMR spectroscopy, Am. Mineral., 2007, vol. 587–597, no. 92.

  32. Parker, R.L., Isomorphous substitution in natural and synthetic alunite, Am. Mineral., 1962, vol. 127–136, nos. 1–2, pp. 127–136.

  33. Parry, W.T., Ballantyne, J.M., Bryant, N.L., and Dedolph, R.E., Geochemistry of hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah, Geochim. Cosmochim. Acta, 1980, vol. 44, no. 1, pp. 95–102.

  34. Reardon, E.J., Complexing of silica by iron (III) in natural waters, Chem. Geol., 1979, vol. 25, no. 4, pp. 339–345.

    Article  Google Scholar 

  35. Schoen, R., White, D.E., and Hemley, J.J., Argillization by descending acid at Steamboat Springs, Nevada, Clays Clay Miner., 1974, vol. 22, no. 1, pp. 1–22.

    Article  Google Scholar 

  36. Sharapov, I.P., Primenenie matematicheskoi statistiki v geologii (Application of Mathematic Statistics in Geology), Moscow: Nedra. 1965.

  37. Sidorov, S.S., Multistage postvolcanic hydrothermal alteration of rocks exemplified by alunitization, Tr. Inst. Vulkanol. SO AN SSSR, 1967, vol. 24, pp. 1–65.

    Google Scholar 

  38. Sklyarov, R.Ya., Distribution of aluminum ores and associated mineral resources in Far East, Tikhookean. Geol., 1985, no. 4, pp. 19–25.

  39. Sorokin, V.I., Dadze, T.P., and Kashirtseva, G.A., Sulfide–sulfate zoning in hydrothermal ore formation: thermodynamic calculations, Eksperimental’noe i teoreticheskoe modelirovanie protsessov mineraloobrazovaniya (Experimental and Theoretical Modeling of Mineral Formation), Moscow: Nauka, 1998, pp. 341–354.

    Google Scholar 

  40. Stoffregen, R.E. and Cygan, G., An experimental study of Na–K exchange between alunite and aqueous sulfate solutions, Am. Mineral., 1990, vol. 75, pp. 209–220.

    Google Scholar 

  41. Stoffregen, R.E., Rye, R.O., and Wasserman, M.D., Experimental studies of alunite: 2. Rates of alunite–water alkali and isotope exchange, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 2, pp. 917–929.

    Article  Google Scholar 

  42. Stoffregen, R.E., Alpers, C.N., and Jambor, J.L., Alunite–jarosite crystallography, thermodynamics, and geochronology, Rev. Mineral. Geochem., 2000, vol. 40, pp. 453–479.

    Article  Google Scholar 

  43. Taylor, H.P., The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 1974, vol. 69, pp. 843–883.

    Article  Google Scholar 

  44. Tkachenko, R.I., Some problems of hydrothermal alteration of rocks in areas of active volcanism, Izv. Akad. Nauk SSSR, Ser. Geol., 1964, no. 6, pp 79–85.

  45. Tkachev, Yu.A., Should the geological data comply with the normal (Gaussian) distribution for statistical processing?, Vestn. Inst. Geol. Komi NTs UrO RAN, 2013, no. 1, pp. 26–30.

  46. Vdovets, A.Z., Alunite-bearing metasomatites of the Began’ deposit and conditions of their formation, Litol. Polezn. Iskop., 1987, no. 5, pp. 97–111.

  47. Vdovets, A.Z., Phenomenon of ductile flowing of alunite quartzites during their formation, Dokl. Akad. Nauk, 1993, vol. 331, no. 3, pp. 335–339.

    Google Scholar 

  48. Vdovets, A.Z., Epochs of alunite formation in the Earth’s history, Dokl. Earth Sci., 1998, vol. 358, no. 2, pp. 26–29.

    Google Scholar 

  49. Vdovets, A.Z., Geological features and formational conditions of the Zaglik alunite deposit, Lesser Caucasus, Lithol. Miner. Resour., 1999, vol. 34, no. 3, pp. 226–243.

    Google Scholar 

  50. Vdovets, A.Z. and Berkh, A.A., Potassium and sodium in the alubite of the Began’ deposit, Litol. Polezn. Iskop., 1982, no. 4, pp. 95–106.

  51. Vergasova, L.P., Kirsanova, T.P., Filosofova, T.M., and Boikova, I.A., Alunitization in the crater of Shiveluch volcano, Northern group of Volcanoes, Kamchatka, Vestn. KRAUNTs, Nauki o Zemle, 2007, no. 1, pp. 51–60.

  52. Vlasov, G.M. and Vasilevskii, M.M., Genesis and interaction of ore formations of secondary quartzites in propylites of the Sredinny Kamchatsky range, Voprosy vulkanizma (Problems of Volcanism), Moscow: AN SSSR, 1962, pp. 286–293.

    Google Scholar 

  53. White, N.C. and Hedenquist, J.W., Epithermal gold deposits: styles, characteristics and exploration, Soc. Econ. Geol. (SEG),Newslett., 1995, vol. 23, pp. 9–13.

    Google Scholar 

  54. Zharikov, V.A., Rusinov, V.L., Marakushev, A.A., Zaraiskii, G.P., Omel’yanenko, B.I., Pertsev, N.M., Rass, I.T., Andreeva, O.T., Abramov, S.S., and Podlesskii, K.V., Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks), Moscow: Nauchnyi mir, 1998.

  55. Zonnenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (tectonics of Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, vol. 1.

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to professors E.G. Panova and A.B. Koltsov of St. Petersburg State University and professor Yu.B. Marin of St. Petersburg Mining University for detailed discussion and constructive comments that helped to significantly improve the paper; to E.V. Plyushchev, S.V. Kashin, and S.V. Sokolov of the Russian Geological Research Institute for valuable advice on the data reporting; to Yu.I. Borin and M.A. Chuiko for information support in processing chemical analyzes and advice on preparing figures; to L.M. Il’ina and S.Yu. Yanson of St. Petersburg State University for help in sampling and evaluating the microprobe analyses; and to A.V. Panov, M.V. Kremen, A.G. Suss, and S.Yu. Engalychev of JSC RUSAL All-Russia Aluminum and Magnesium Institute for discussion of this paper and friendly assistance in preparing supporting documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Vdovets.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vdovets, A.Z. Variability of Alunite Quartzite Composition as a Reflection of the Characteristics of Its Genesis. Geol. Ore Deposits 62, 138–162 (2020). https://doi.org/10.1134/S1075701520020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520020063

Keywords:

Navigation