Skip to main content
Log in

Mesozoic Acid Magmatites of Southeastern Transbaikalia: Petrogeochemistry and Relationship with Metasomatism and Ore Formation

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—

The characteristic features of the manifestations of acid magmatism and metasomatic hydrothermal alteration processes in Southeastern Transbaikalia, an important mining region in Russia, are discussed. The zoned or beltlike distribution of the ores of various metals, uranium in particular, and other mineral deposits is due to the general evolutionary trends of the geodynamic regimes of the respective blocks of the territory and the subsequent magmatic differentiation trends. The highly differentiated and fluorine-rich granitoids of Southeastern Transbaikalia are located only in the zones of the consolidated crust, which are characterized by low gravity and negative quiet magnetic field values. In other zones, i.e., volcanic belts, volcanogenic troughs, and the regions dominated by the intrusive massifs of the Shakhtama complex, rare metal manifestations are absent. It was demonstrated that there is no correlation between the localization of large uranium deposits and leucocratic rare metal granite domains and that these deposits are concentrated in large volcanic calderas or volcanic troughs, controlled by long-lived fault systems. In addition to uranium, these volcanogenic structures control base metal, molybdenum, gold, fluorite, and some other mineral deposits. The results of a comparative analysis of the geochemical features of the acid volcanics that host the uranium mineralization and are classified as the last differentiation products of the contrasting latite volcanism, on the one hand, and the subvolcanic and hypabyssal derivatives of the rare metal granites, on the other, are presented. The analysis revealed the signatures of their fundamental difference from each other and that they belong to different branches of magmatic differentiation. A comparative analysis of the metasomatic aureoles of the altered wallrocks in the Late Mesozoic volcanics and the Shakhtama granitoid domains, on the one hand, and the leucocratic rare metal granite domain, on the other, is given. The data presented attest to the existence of a mixed geodynamic regime within the study area of the Central Asian mobile belt during the Jurassic and the earliest Cretaceous time: residual collisions with strong deformations in a compressional setting, accompanied by the development of late acid differentiation products of the magmatic latite series, and the incipient rifting associated with the intrusion of the leucogranites of the Kukul’bei complex in a more quiet extensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abushkevich, V.S. and Syritso, L.F., Izotopno–geokhimicheskaya model' formirovaniya Li–F granitov Khangilaiskogo rudnogo uzla v Vostochnom Zabaikal’e (Isotope-Geochemical Model of the Formation of Li–F Granites of the Khangilai Ore Cluster in Eastern Transbaikalia), St. Petersburg: Nauka, 2007.

  2. Afanas’ev, G.V., Mironov, Yu.B., and Pinskii, E.M., East Asian Belt of the Leucogranite-Type Uranium Deposits, Regional. Geol. Metallogen., 2015, no. 61, pp. 92–100.

  3. Aksyuk, A.M., Experimentally established geofluorimeters and the fluorine regime in granite-related fluids, Petrology, 2002, vol.10, no. 6, pp. 557–569.

    Google Scholar 

  4. Aleshin, A.P., Velichkin, V.I., and Krylova, T.P., Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, no. 49, pp. 392–412.

  5. Andreeva, O.V. and Golovin, V.A., Metasomatic Processes in Ore Deposits in the Mesozoic intraplate activization areas (Eastern Mongolia and the Transbaikal region), Geol. Ore Deposits, 2001, vol. 43, no. 3, pp. 202–215.

    Google Scholar 

  6. Andreeva, O.V., Golovin, V.A., Gol’tsman, Yu.V., Kozlova, P.S., and Sel’tsov, B.M., Evolution of Mesozoic magmatism and ore-forming metasomatic processes in the southeastern Transbaikal Region (Russia), Geol. Ore Deposits, 1996, vol. 38, no. 2, pp. 101–113.

    Google Scholar 

  7. Antipin, V.S., Andreeva, I.A., and Kovalenko, V.I., Geochemical specifics of ongonites in the Ary-Bulak Massif, Eastern Transbaikalia, Petrology, 2009, vol. 17, no. 6, pp.558–569.

    Article  Google Scholar 

  8. Badanina, L.V., Syritso, L.F., Abushkevich, V.S., Thomas, R., and Trumbull, R.B. Geochemistry of ultra-potassic rhyodacite magmas from the area of the Orlovka Massif of Li—F granites in Eastern Transbaikalia: evidence from study of melt inclusions in quartz, Petrology, 2008, vol. 16, no. 3, pp. 299–311.

    Article  Google Scholar 

  9. Badanina, E.V., Trumbull, R.B., and Dulski, Pl., The behaviour of rare–earth and lithophile trace elements in rare–metal granites: a study of fluorite, melt inclusions and host rocks from the Khangilay Complex, Transbaikalia, Russia, Can. Mineral., 2006, no. 44, pp. 667–692.

  10. Ballouard, C., Poujol, M., and Mercadier, J., Uranium metallogenesis of the peraluminous leucogranite from the Pontivy–Rostrenen magmatic complex (French Armorican Variscan Belt): the result of long–term oxidized hydrothermal alteration during strike–slip deformation, Miner. Deposita, 2018, no. 53, pp. 601–628.

  11. Berzina, A.P., Berzina, A.N., Gimon, V.O., Krymskii, R.Sh., Larionov A.N., Nikolaeva I.N., and Serov, P.A., The Shakhtama Mo–porphyry ore-magmatic system (Eastern Transbaikalia): age, sources, and genetic features, Russ. Geol. Geophys., 2013, vol. 54, no. 6, pp.587–605.

    Article  Google Scholar 

  12. Beskin, S. M., Metallogenicheskoe raionirovanie oblastei granitoidnogo magmatizma (Metallogenic Zoning of the Areas of Granitoid Magmatism), Moscow: IMGRE. 2007.

  13. Beskin, S.M., Zagorskii, V.E., and Kuznetsova, L.G., Etyka rare-metal ore field in Eastern Transbaikalia, East Siberia, Geol. Ore Deposits, 1994, vol. 36, no.4, pp. 310–325.

    Google Scholar 

  14. Bortnikov N.S., Volkov A.V., Galyamov A.L., Vikent’ev I.V., Aristov V.V., Lalomov A.V., and Murashev, K.Yu., Mineral resources of high-tech metals in Russia: state of the art and outlook, Geol. Ore Deposits, 2016, vol. 58, no. 2, pp. 83–103.

    Article  Google Scholar 

  15. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Miner. Deposita, 2003, no. 38, pp. 127–140.

  16. Chernyshev, I.V. and Golubev, V.N., The Strel’tsovskoe Deposit, Eastern Transbaikalia: isotope dating of mineralization in Russia’s largest uranium deposit, Geochem. Int., 1996, vol. 34, no. 10, pp. 834–846.

    Google Scholar 

  17. Chernyshev, I.V., Prokof’ev, V.Yu., Bortnikov, N.S., Chugaev, A.V., and Gol’tsman, Yu.V., Age of granodiorite porphyry and beresite from the Darasun Gold Field, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 2014, vol. 56, no. 1, pp. 1–14.

    Article  Google Scholar 

  18. Einaudi, M.T., Hedenquis, J.W., and Ersa Inan, E., Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments, Volcanic, geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, Giggenbach Volume, Soc.Econ. Geol., Spec. Publ., 2003, vol. 10.

    Google Scholar 

  19. Endogennye rudnye formatsii Mongolii (Endogenous Ore Formations of Mongolia), Moscow: Nauka, 1984.

  20. Cuney M., Felsic magmatism and uranium deposits, Bull. Soc. Geolog. France, 2014, no. 185, no. 2, pp. 75–92.

  21. Gaivoronskii, B.A., Mineralogical-geochemical features and some regularities in the localization of scheelite skarns of Eastern Transbaikalia and Mongolia, Voprosy geologii i metallogenii Chitinskoi oblasti (Problems of Geology and Metallogeny of the Chita District), Moscow: Geolfond MinGeo SSSR, 1986, pp. 54–57.

    Google Scholar 

  22. Geologicheskoe stroenie Chitinskoi oblasti. Ob”yasnitel’naya zapiska k geologicheskoi karte massh. 1 : 500000 (Geological Structure of the Chita District. Explanatory Note to the Geological Map. Scale 1 : 500000) Rutshtein, I.G, Eds., Chita: Chitageol’s’emka, 1997.

  23. Golubev, V.N., Age of dispersed uranium mineralization in rocks of the framework of the Strel’tsovka uranium ore field and the Yamsky Site, Eastern Transbaikal Region, Geol. Ore Deposits, 2011, vol. 53, no. 5, pp. 401–411.

    Article  Google Scholar 

  24. Golubev, V.N., Chernyshev, I.V., Kotov, A.B., Sal’nikova, E.B., Gol’tsman, Yu.V., Bairova, E.D., and Yakovleva, S.Z., The Strel’tsovka uranium district: isotopic geochronological (U–Pb, Rb–Sr, Sm–Nd) characterization of granitoids and their place in the formation history of uranium deposits, Geol. Ore Deposits, 2010, vol. 52, no. 6, pp. 496–513.

    Article  Google Scholar 

  25. Grabezhev, A.I., Kuznetsov, N.S., and Puzhakov, B.A., Rudno–metasomaticheskaya zonal’nost' medno–porfirovoi kolonny natrievogo tipa (Ore Metasomatic Zoning of Copper-Porphyry Column of Sodic Type), Ekaterinburg: Izd. UGGGA, 1998.

  26. Grabezhev, A.I., Zhukhlistov, A.P., Rusinova, O.V., and Puzhakov, B.A., Muscovite–paragonite series: arguments for the existence for the intermediate homogeneous K–Na mica,” Dokl. Earth Sci., 1996, vol. 351, no. 8, pp. 1260–1262.

    Google Scholar 

  27. Gray, T.R., Hanley, J.J., Dostal, J., and Guillong, M., Magmatic enrichment of uranium, thorium, and rare earth elements in Late Paleozoic rhyolites of southern New Brunswick, Canada: evidence from silicate melt inclusions, Econ. Geol., 2011, no. 106, no. 5, pp. 145–158.

  28. Guidotti, C.V., Micas in metamorphic rocks, Micas,Rev. Mineral., 1984, no. 13, pp. 357–456.

  29. Hemley, J.J. and Jonesw, R., Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism, Econ. Geol., 1964, no. 59, no. 4, pp. 538–569.

  30. Ishchukova, L.P., Modnikov, I.S., Sychev, I.V., Nauiov, G.B., Mel’nikov, I.V., and Kandinov, M.N., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Strel’tsovka Ore Field, Transbaikalia), Irkutsk: GK “Geologorazvedka”, 2007. 260 s.

  31. Ishihara, S., The granitoid series and mineralization, Econ.Geol., 1981, vol. 75, pp. 458–484.

    Google Scholar 

  32. Ishihara, S., The magnetite series and ilmenite series granitic rocks, Mining Geol, 1977, no. 27, pp. 293–305.

  33. Ivanova, T.A., Ispol’zovanie osobennostei mineral’nogo sostava gidrotermal’no izmenennykh porod dlya prognoza rudonosnykh ploshchadei. Prognozirovanie rudonosnykh ploshchadei (Application of Features of Mineral Composition of Hydrothermally Altered Rocks for Prediction of Ore-Bearing Areas. Prediction of Ore-Bearing Areas), Moscow: Nauka, 1976, pp.116–153.

  34. Jiyama, J.T., Etude des reaction d`echange d`ions Na–K dans la seria muscovite–paragonite, Bull. Soc. Fr. Mineral., 1964, no. 87, pp. 532–541.

  35. Kigai, I.N., Redox problems in the “metallogenic specialization” of magmatic rocks and the genesis of hydrothermal ore mineralization, Petrology, 2011, vol. 19, no. 3, pp. 303–324.

    Article  Google Scholar 

  36. Konstantinov, A.K., Uranovyi potentsial Chukotki (Uranium Potential of Chukotka), Mineral’noe syr’e (Mineral Raw Material), Moscow: VIMS. 2005, vol. 16.

    Google Scholar 

  37. Kovalenker, V.A., Mineralogical–Geochemical Tendencies of the Formation of the Epithermal Gold and Silver Ores, Extended Abstract of Doctoral (Geol.-Min) Dissertation, Moscow: IGEM RAN, 1995.

  38. Kovalenker, V.A., Kiseleva, G.D., Krylova, T.L., and Andreeva, O.V., Mineralogy and ore formation conditions of the Bugdaya Au-Bearing W–Mo porphyry deposit, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 2011, vol. 53, no. 2, pp. 107–142.

    Article  Google Scholar 

  39. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic position of Mesozoic mantle rocks of the Strel’tsovka caldera (Eastern Transbaikalia), mantle domains of Central Asia and China, Vestn. KRAUNTs. Nauki o Zemle, 2015, vol. 4, no. 28, pp. 231–246

  40. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic settings of the formation of Mesozoic volcanics (Strel’tsovka Caldera, Transbaikal region), Dokl. Earth Sci., 2014, vol. 457, no. 5, pp. 931–934.

    Article  Google Scholar 

  41. Kovalenko, N.I., Ryzhenko, B.N., Prisyagina, N.I., Experimental determination of uranium (IV) speciation in HF solutions at 500°C and 1000 bar, Geochem. Int., 2012, vol. 50, no. 1, pp. 18–25.

    Article  Google Scholar 

  42. Kovalenko, V.I. and Kovalenko, N.I., Ongonites as subvolcanic analogues of rare-metal Li–F granites, Trudy sovmestnoi Sovetsko–Mongol’skoi nauchno–issledovatel’skoi geologicheskoi ekspeditsii (Proc. Joint Soviet–Mongolian Research Geological Expedition), Moscow: Nauka, 1976, vol. 15.

    Google Scholar 

  43. Kozlov, V.D., Trace-element composition and origin of granitoids from the Shakhtama Compelx and Kukul’bei rare-metal complex (Aga zone, Transbaikalia), Russ. Geol. Geophys., 2011, vol. 52, no. 5, pp. 526–536.

    Article  Google Scholar 

  44. Kozlov, V.D., Rare-earth elements as indicators of ore sources and the degree of differentiation and ore potential of rare-metal granite intrusions (eastern Transbaikalia), Russ. Geol. Geophys., 2009, vol. 50, no. 1, pp. 29–42.

    Article  Google Scholar 

  45. Kozlov, V.D. and Efremov, S.V., Potassic alkaline basaltoids and questions of geochemical specialization of associated rare-metal granites, Russ. Geol. Geophys., 1999, vol. 40, no. 7, pp. 989–1002.

    Google Scholar 

  46. Krivtsov, A.I, Migachev, I.F., and Popov, V.S., Medno–porfirovye mestorozhdeniya mira (Copper Porphyry Deposits of the World) Moscow: Nauka, 1987.

  47. Kuznetsov, V.A., Andreeva, I.A., and Kovalenko, V.I., Abundance of water and trace elements in the ongonite melt of the Ary-Bulak Massif, Eastern Transbaikal Region: evidence from study of melt inclusions, Dokl. Earth Sci. 2004, vol. 396, no. 4, pp. 571–576.

    Google Scholar 

  48. Laverov, N.P., Velichkin, V.I., Vlasov, B.P., Aleshin, A.P., and Petrov, V.A., Uranovye i molibden–uranovye mestorozhdeniya v oblastyakh razvitiya kontinental’nogo magmatizma: geologiya, geodinamicheskie i fiziko–khimicheskie usloviya formirovaniya (Uranium, and Molybdenum–Uranium Deposits in the Areas of Continental Magmatism: Geology, Geodynamic, and Physicochemical Conditions of Formation), Moscow: IFZ RAN, IGEM RAN, 2012.

  49. Letnikov, F.A., Fluids in endogenic processes and problems of metallogeny, Russ. Geol. Geophys., 2006, vol. 47, no. 12, pp. 1271–1281.

    Google Scholar 

  50. Lishnevskii, E.N., Geological-geophysical characteristics of tin- and molybdenum-bearing ore-forming systems, Geol. Rudn. Mestorozhd., 1991, no. 5, pp. 676–689

  51. Lishnevskii, E.N. and Beskin, S.M., Anomalous magnetic field as factor of metallogenic zoning of the areas of granitoid magmatism, Byull. MOIP. Otd. Geol. 1994, vol. 69. Vyp. 5, pp. 47–58.

  52. Manning, D.A.C., The effect of fluorine on liquidus phase relationship in the system Qz–Ab–Or with excess water at 1 kb, Contrib. Mineral. Petrol., 1981, no. 76, pp. 206–215.

  53. Marin, Yu.B, Skublov, G.T., and Gulbin, Yu.P., Mineralogical–geochemical criteria for local prediction of rare-metal deposits, Mineralogicheskoe kartirovanie i indikatory orudeneniya (Mineralogical Mapping and Indicators of Mineralization), Leningrad: Nauka. 1990, pp. 67–95.

    Google Scholar 

  54. Menaker, G.I., Tectonosphere and metallogeny of Transbaikalia: geohistorical aspect, Geol. Rudn. Mestorozhd., 1990, no.1, pp. 21–36.

  55. Menaker. G.I., Structure of the Earth’s crust and tendencies in the spatial distribution of ore deposits in the Central and Eastern Transbaikalia, Geol. Rudn. Mestorozhd., 1972, no. 6, pp. 3–16.

  56. Metasomatity i metasomaticheskie porody (Metasomatites and Metasomatic Rocks), Moscow: Nauchnyi mir. 1998.

  57. Naumov, V.B., Rhyolitic melts in Eastern Transbaikalia and the North Caucasus: chemical composition, volatiles, and admixture elements (from data of study of melt inclusions in minerals), Russ. Geol. Geophys., 2011, vol. 52, no. 11. C. 1368–1377.

  58. Ontoev, D.O., Stadiinost’ mineralizatsii i zonal’nost' mestorozhdenii (Mineralization Stages and Zoning of Deposits), Moscow: Nauka, 1974.

  59. Ouyang, H., Mao, J., Santosh, M., Zhou, J., Zhou, Z., Wue, Y., and Hou, L., Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: perspectives from spatiotemporal distribution patterns of ore deposits, J. Asian Earth Sci., 2013, no. 78, pp. 222–236.

  60. Peccerillo, A. and Taylor, S.R., Geochemistry of eocene calc–alkaline volcanic rocks from Kastamonu area, northern Turkey, Contrib. Mineral. Petrol., 1976, no. 58, no. 1, pp. 63–83.

  61. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Thermal convection of fluids as a possible mechanism for the formation of the unique Streltsovka and Antei uranium deposits (Eastern Transbaikalia), Geol. Ore Deposits, 2018, vol. 60, no. 6, pp. 497–512.

    Article  Google Scholar 

  62. Peretyazhko, I.S. and Savina, E.A., Fluid and magmatic processes in the formation of the Ary-Bulak ongonite massif (eastern Transbaikalia), Russ. Geol. Geophys., 2010, vol. 51, no. 10, pp. 1110–1125.

    Article  Google Scholar 

  63. Peretyazhko I.S., Savina E.A., Dril’ S.I., and Gerasimov N.S. Rb–Sr isotopic syste abd Rb and Sr partitioning in the rocks of the Ary-Bulak ongonite massif, formed with the participation of fluoride–silicate magmatic immiscibility, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1401–1411.

    Article  Google Scholar 

  64. Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the southern Cis-Argun Region, Geol. Ore Deposits, 2017, vol.59, no. 6, pp. 431–452.

    Article  Google Scholar 

  65. Pirajno, F., The Geology and Tectonic Settings of China’s Mineral Deposits, Dordrecht–Heidelberg: Springer, 2013.

    Book  Google Scholar 

  66. Podlesskii, K.V., Rekharskii, V.I., and Vlasova, D.K. The gold–tungsten skarn ores of the Andryushkin Deposit (Russia), Geol. Ore Deposits, 1998, vol. 40, no. 1, pp. 51–65.

    Google Scholar 

  67. Popov, A.A., Geochemistry of muscovite, Fiziko–khimicheskie problemy magmaticheskikh i gidrotermal’nykh protsessov (Physicochemical Problems of Magmatic and Hydrothermal Processes), Moscow: Nauka, 1975, pp. 61–69.

    Google Scholar 

  68. Popov, A.A., Compositions of muscovites and paragonites synthesized at temperature 350–500°C, Geokhimiya, 1968, no. 2, pp. 121–129.

  69. Redkin, A.F., Influence of oxygen fugacity and solution composition on uranium oxides lability at temperatures to 600°C and P = 1 kbar (by experimental and thermodynamic data), Abstr. NRC 4.Sant Malo, 1996, vol. 2, pp. 55–61.

    Google Scholar 

  70. Rublev, A.G. and Bueva, E.P., On duration and stages of hydrothermal formation of uranium deposits in the Strel’tsovsk ore field, Geol. Ore Deposits, 1998, vol. 40, no. 6, pp. 497–501.

    Google Scholar 

  71. Rusinov, V.L. and Rusinova, O.V., Variations of vertical zoning at wall-rock argillic alteration, their reasons and petrogenetic significance, Izv. AN SSSR. Ser. Geol., 1977, no. 10, pp. 147–158

  72. Sasim, S.A., Chukanova, V.S., Il’ina, N.N., Semenova, A.V., and Oshchepkova, Yu.V., Geochemistry of volcanic rocks of the Late Mesozoic rift association of the Aleksandrovo–Zavodskaya Basin (southeastern Transbaikalia), Izv. Irkutsk. Gos. Univ., Ser. Nauki o Zemle, 2012, vol. 5, no. 2, pp. 209–228.

  73. Shatkov, G.A., Berezhnaya, N.G., Lepekhina, E.N., Rodionov, R.V., Paderin, I.P., and Sergeev, S.A., U–Pb (SIMS SHRIMP–II) age of volcanic rocks from the Tulukuev Caldera (Streltsov uranium-ore cluster, Eastern Transbaikalia), Dokl. Earth Sci., 2010, vol. 432, no. 3, pp. 587–592.

    Article  Google Scholar 

  74. Shatkov, G.A., Shatkova, L.N., and Gushchin, E.N., On the distribution of uranium, thorium, fluorine, chlorine, molybdenum, and niobioum in rhyolitic and acid volcanic glasses, Zap. Vsesoyuz. Mineral.O-va, 1970, vol. 99, no. 2, pp. 165–177.

    Google Scholar 

  75. Spravochnik po geokhimii (Textbook on Geochemistry), Voitkevich, G.V, Kokin, A.V, Miroshnikov, A.E, Prokhorov, Moscow: Nedra, 1990.

  76. Stupak, F.M., Kudryashova, G.A., and Lebedev, V.A., The structure, composition, and conditions of generation for the Early Cretaceous Mongolia–East-Transbaikalia volcanic belt: the Durulgui–Torei Area (Southern Transbaikalia, Russia), J. Volcanol. Seismol., 2018, vol. 12, no. 1, pp. 34–46

    Article  Google Scholar 

  77. Syritso, L.F., Badanina, E.V., Abushkevich, V.S., Volkova, E.V., and Shuklina, E.V., Volcanoplutonic association of felsic rocks in the rare-metal ore units of Transbaikalia: geochemistry of rocks and melts, age, and P-T conditions of their crystallization, Petrology, 2012, vol. 20, no. 6, pp. 567–592.

    Article  Google Scholar 

  78. Syritso, L.F., Sarin, L.P., Spiridonov, A.A., and Korobeinikova, L.P., Levels of Rb and Sr concentration as indicator of specialization of granitoids of activation zones, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 5, pp.1221–1224

    Google Scholar 

  79. Tauson, L.V., Geochemistry and metallogeny of latite series, Geol. Rudn. Mestorozhd., 1982, no. 3, pp. 3–14.

  80. Tauson, L.V., Magmas and ores, Geokhimiya rudoobrazuyushchikh sistem i metallogenicheskii analiz (Geochemistry of Ore-Forming Systems and Metallogenic Analysis), Novosibirsk: Nauka, 1989.

    Google Scholar 

  81. Tauson, L.V., Antipin, V.S., Zakharov, M.V., and Zubkov, V.S., Geokhimiya mezozoiskikh latitov Zabaikal’ya (Geochemistry of Mesozoic Latites of Transbaikalia), Novosibirsk: Nauka, 1984.

  82. Taylor, S.R. and McLennan, S.M., The Continental Crust; its Composition and Evolution, Cambridge: Mass.: Blackwell, 1985.

    Google Scholar 

  83. Uran rossiiskikh nedr (Uranium of Russian Interiors), Mashkovtsev, G.G., et al., Eds., Nauchnyi Mir, 2010.

    Google Scholar 

  84. Uranovye mestorozhdeniya Mongolii (Uranium Deposits of Mongolia), Mironov, Yu.B, Shuvalov, Yu.M, Eds., St. Petersburg: VSEGEI, 2009.

  85. Vishnyakov, V.E., Uranium deposits of the Daur ore district, Mestorozhdeniya Zabaikal’ya (Deposits of Transbaikalia), Moscow: Geoinformmark, 1995, vol. 2, pp. 173–178.

    Google Scholar 

  86. Vladimirov, A.G., Annikova, I.Yu., Antipin, V.S., Ongonite–elvan volcanism of southern Siberia, Litosfera, 2007, no. 4, pp. 21–40.

  87. Wu, F.Y., Sun, D.Y., Ge, W.C., L., Yan–Bin Zhang, Grant, M.L., Wilde, S.A., and Bor–Ming Jahn, Geochronology of the Phanerozoic granitoids in northeastern China, J. Asian Earth Sci., 2011, no. 41, pp. 1–30.

  88. Xu, W.L., Pei, F.P., Wang, F., En, Meng., Wei–Qiang, Ji., De–Bin, Yang., and Wei, Wang., Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes, J. Asian Earth Sci., 2013, no. 74, pp. 167–193.

  89. Yarmolyuk, V.V., Kovalenko, V.I., and Ivanov, V.G., Within-plate Late Mesozoic–Cenozoic volcanic province of Central–East Asia: projection of hot manlte field, Geotektonika, 1995, vol. 29, no. 5, pp. 395–421.

    Google Scholar 

  90. Yarmolyuk, V.V., Nikiforov, A.V., Kozlovsky, A.M., and Kudryashova, E.A., Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions, Geotectonics, 2019, vol. 53, no. 4, pp. 500–516.

    Article  Google Scholar 

  91. Yu, Li., Wen–Liang, Xu., Jie, Tang., Fu–Ping, Pei., Feng, Wang., and Chen–Yang, Sun., Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an massif of NE China: implications for the evolution and spatial extent of the Mongol–Okhotsk tectonic regime, Lithos, 2018, no. 304–307, pp. 57–73.

  92. Zaraisky, G.P., Eksperiment v reshenii problem metasomatizma (Experiment in Solving the Problems of Metasomatism), Moscow: GEOS, 2007.

  93. Zaraisky, G.P., Aksyuk, A.M., Devyatova, V.N., Udoratina, O.V., and Chevychelov, V.Yu. The Zr/Hf ratio as a fractionation indicator of rare-metal granites, Petrology, 2009, vol. 17, no. 1, pp. 25–45.

    Article  Google Scholar 

  94. Zharikov, V.A. and Zaraisky, G.P., Genesis of the Akchatau greisen deposit : numerical modeling, Smirnovskii sbornik (Smirnov Collection of Papers), Moscow: Fond im. V.I. Smirnova, 1995, pp. 29–91.

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to S.V. Yudintsev for the discussion of this paper and valuable comments.

Funding

This work was performed with the financial support of the State Task “Tectonodynamic and Physicochemical Conditions of Uranium Mobilization, Transfer, and Deposition during the Formation of the Main Industrial–Genetic Types of Uranium Deposits” for the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, and the Russian Foundation for Basic Research (project no. 18-05-00673).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Andreeva, V. A. Petrov or V. V. Poluektov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, O.V., Petrov, V.A. & Poluektov, V.V. Mesozoic Acid Magmatites of Southeastern Transbaikalia: Petrogeochemistry and Relationship with Metasomatism and Ore Formation. Geol. Ore Deposits 62, 69–96 (2020). https://doi.org/10.1134/S1075701520010018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520010018

Keywords:

Navigation