Skip to main content
Log in

Structural Transformation of a (1 – x)Fe2O3xRuO2 Nanosystem at Different Reduction Temperatures

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The phase composition and structure of oxide and hydrogen-reduced iron–ruthenium systems are studied using conversion and adsorption Mössbauer spectroscopy, as well as X-ray diffraction methods. In samples with metal concentration (mass %) 50Fe–50Ru after calcination in air at 773 and 973 K, nanosystems containing two phases with different degrees of dispersion are formed (α-Fe2O3 with an admixture of Ru and RuO2 with an admixture of Fe, respectively). Structural transformations of the nanosystem calcinated at 973 K in different reduction conditions are investigated. It is shown that the formation of nanostructures depends on the initial and final reduction temperatures. The presence of ruthenium substantially changes the reduction kinetics of oxide systems. It is shown that upon an increase in the reduction temperature, the rearrangement of initial stoichiometric oxides to intermediate oxide structures with varying compositions and with different crystal lattice types is observed. The terminating stage of reduction is the formation of metal clusters or solid solutions of intermetallides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. V. Tovbin, V. Ya. Zabuga, and V. K. Yatsimirskii, Catalytic Properties of Alloys in the Synthesis of Ammonia (Kiev, 1973) [in Russian].

    Google Scholar 

  2. A. Ya. Rozovskii, V. D. Stytsenko, and V. F. Tret’yakov, Kinet. Katal. 18, 1211 (1976).

    Google Scholar 

  3. Kh. M. Minachev, G. V. Antoshin, and E. S. Shpiro, Photoelectron Spectroscopy and its Use in Catalysis (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  4. A. Nielsen, Catal. Rev. 23, 17 (1981).

    Article  Google Scholar 

  5. G. I. Kileinikov, Yu. V. Maksimov, V. V. Dudoladov, I. P. Suzdalev, I. G. Brodskaya, and L. M. Dmitrenko, Kinet. Katal. 30, 927 (1989).

    Google Scholar 

  6. M. G. Chudinov, A. M. Alekseev, L. M. Dmitrenko, V. M. Perov, and I. G. Nazarova, Kinet. Katal. 29, 909 (1988).

    Google Scholar 

  7. B. N. Kuznetsov, V. M. Perov, A. M. Alekseev, and V. I. Yakerson, Kinet. Catal. 41, 696 (2000).

    Article  Google Scholar 

  8. State Diagrams of Binary Metal Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2 [in Russian].

    Google Scholar 

  9. M. D. Shibanova, V. M. Kadenatsi, Yu. V. Maksimov, A. V. Golub’ev, A. I. Matveev, and I. P. Suzdalev, Kinet. Katal. 27, 200 (1986).

    Google Scholar 

  10. M. D. Shibanova, A. V. Golub’ev, Yu. V. Maksimov, I. P. Suzdalev, and V. N. Korchak, Kinet. Catal. 42, 112 (2001).

    Article  Google Scholar 

  11. K. N. Nishchev, M. A. Golub’ev, V. I. Beglov, V. M. Kyashkin, A. A. Panov, and Y. V. Maksimov, Tech. Phys. 60, 695 (2015).

    Article  Google Scholar 

  12. A. V. Golub’ev, V. M. Erkin, G. I. Kileinikov, and V. D. Chervenkov, Zavod. Lab. 48, 39 (1982).

    Google Scholar 

  13. V. A. Povitskii, E. F. Makarjv, N. V. Murashko, and A. N. Salugin, Phys. Status Solidi A 33, 783 (1976).

    Article  ADS  Google Scholar 

  14. F. M. Galperin, A. N. Salugin, A. A. Saigin, and N. V. Elistratov, Phys. Status Solidi A 22, 7 (1974).

    Article  ADS  Google Scholar 

  15. A. Ya. Vlasov and M. N. Rukosuev, Russ. Phys. J. 15, 1226 (1972).

    Google Scholar 

  16. A. N. Salugin, Cand. Sci. Dissertation (Inst. Phys. Chem. Acad. Sci. USSR, 1978).

  17. T. Nakamura, T. Shinjo, Y. Endoh, Y. Yamamoto, M.  Shinga, and Y. Nakamura, Phys. Lett. 12, 178 (1964).

    Article  ADS  Google Scholar 

  18. G. N. Belozerskii and Yu. T. Pavlyukhin, Physical Methods for the Study of Solids (Ural. Politekh. Inst., Sverdlovsk, 1975), No. 1, p. 52 [in Russian].

  19. S. M. Irkaev, R. N. Kuz’min, and A. A. Opalenko, Nuclear Gamma Resonance (Mosk. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  20. F. van der Woude, Phys. Status Solidi 17, 417 (1966).

    Article  Google Scholar 

  21. P. A. Chernavskii, G. V. Pankina, I. N. Zavalishin, and V. V. Lunin, Kinet. Katal. 35, 126 (1994).

    Google Scholar 

  22. A. Basinska, W. K. Jozwiak, and J. F. Goralski Domka, in Proceedings of the International Congress on Catalysis,2000, Granada.

  23. Mingting Xu and E. Jglesia, J. Phys. Chem. B 102, 961 (1998).

    Article  Google Scholar 

  24. V. P. Romanov and V. D. Checherskii, Phys. Solid State 12, 1474 (1970).

    Google Scholar 

  25. B. J. Evans and S. S. Hafner, J. Appl. Phys. 40, 1411 (1969).

    Article  ADS  Google Scholar 

  26. U. Colombo, F. Gazzarrini, and G. Lanzavecchia, Mater. Sci. Eng. 2, 125 (1967).

    Article  Google Scholar 

  27. J. M. Daniels and A. Rosencwaig, J. Phys. Chem. Solids 30, 1561 (1969).

    Article  ADS  Google Scholar 

  28. D. P. Shashkin, P. A. Shiryaev, A. V. Chichagov, O. S. Morozova, and O. V. Krylov, Kinet. Katal. 33, 923 (1992).

    Google Scholar 

  29. W. K. Jóazwiak, T. P. Maniecki, A. Basińska, J. Góralski, and R. Fiedorow, Kinet. Catal. 45, 879 (2004).

  30. J. D. Rush, C. E. Johnson, and M. F. Thomas, J. Phys. F: Metal Phys. 6, 2017 (1976).

    Article  ADS  Google Scholar 

  31. E. J. W. Verwey and P. W. Haayman, Physica (Amsterdam, Neth.). 8, 979 (1941).

    Article  ADS  Google Scholar 

  32. E. J. W. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947).

    Article  ADS  Google Scholar 

  33. L. Zwell, G. R. Spreich, and W. C. Leslie, Metall. Trans. 4, 1990 (1973).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to late G.I. Kileinikov for conducting Mössbauer experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Beglov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golub’ev, A.V., Nishchev, K.N., Beglov, V.I. et al. Structural Transformation of a (1 – x)Fe2O3xRuO2 Nanosystem at Different Reduction Temperatures. Tech. Phys. 65, 805–813 (2020). https://doi.org/10.1134/S1063784220050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050084

Navigation