Skip to main content
Log in

Influence of the Electric Field Enhanced Thermal Electron Emission on Temperature of the Cathode with a Thin Insulating Film in the Arc Gas Discharge

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A model of the electric field enhanced thermal (thermo-field) emission of electrons from the metal cathode substrate into a thin insulating film on its surface is developed. A system of equations for the cathode surface temperature in the arc discharge and the electric field strength in the film, providing the required discharge current density, is formulated. It is shown that existence of the insulating film can result in a considerable reduction of the cathode temperature in the discharge due to lower potential barrier height at the metal-insulator boundary than at the metal-discharge boundary in case of the cathode without the film. It is found that due to an enhancement of the thermal emission of electrons into the film by the electric field generated in it, an additional decrease in the cathode temperature by about 100 K takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).

  2. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Petersburg, 2010) [in Russian].

  3. G. G. Lister, J. E. Lawler, W. P. Lapatovich, and V. A. Godyak, Rev. Mod. Phys. 76, 541 (2004). https://doi.org/10.1103/RevModPhys.76.541

    Article  ADS  Google Scholar 

  4. A. I. Saifutdinov, I. I. Fairushin, and N. F. Kashapov, JETP Lett. 104, 180 (2016). https://doi.org/10.7868/S0370274X16150078

    Article  ADS  Google Scholar 

  5. G. G. Bondarenko, M. R. Fisher, and V. I. Kristya, Tech. Phys. 62, 223 (2017). https://doi.org/10.1134/S1063784217020050

    Article  Google Scholar 

  6. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956). https://doi.org/10.1103/PhysRev.102.1464

    Article  ADS  Google Scholar 

  7. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).

    Book  Google Scholar 

  8. S. Lichtenberg, D. Nandelstädt, L. Darbinghausen, M. Redwitz, J. Luhmann, and J. Mentel, J. Phys. D: Appl. Phys. 35, 1648 (2002). https://doi.org/10.1088/0022-3727/35/14/305

    Article  ADS  Google Scholar 

  9. V. E. Ptitsin, Tech. Phys. 52, 504 (2007). https://doi.org/10.1134/S1063784207040172

    Article  Google Scholar 

  10. V. E. Ptitsin, J. Phys.: Conf. Ser. 291, 012019 (2011). https://doi.org/10.1088/1742-6596/291/1/012019

    Article  Google Scholar 

  11. M. S. Benilov and L. G. Benilova, J. Appl. Phys. 114, 063307 (2013). https://doi.org/10.1063/1.4818325

    Article  ADS  Google Scholar 

  12. A. Venkattraman, Appl. Phys. Lett. 104, 194101 (2014). https://doi.org/10.1063/1.4875237

    Article  ADS  Google Scholar 

  13. J. R. Haase and D. B. Go, J. Phys. D: Appl. Phys. 49, 055206 (2016). https://doi.org/10.1209/0295-5075/120/25002

    Article  ADS  Google Scholar 

  14. M. S. Benilov and A. Marotta, J. Phys. D: Appl. Phys. 28, 1869 (1995). https://doi.org/10.1088/0022-3727/28/9/015

    Article  ADS  Google Scholar 

  15. S. Coulombe and J.-L. Meunier, J. Phys. D: Appl. Phys. 30, 776 (1997). https://doi.org/10.1088/0022-3727/30/20/019

    Article  ADS  Google Scholar 

  16. F. E. Harworth, Phys. Rev. 80, 223 (1950). https://doi.org/10.1103/PhysRev.80.223

    Article  ADS  Google Scholar 

  17. L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  18. V. F. Lutz, IEEE Trans. Plasma Sci. 2, 1 (1974). https://doi.org/10.1109/TPS.1974.4316799

    Article  ADS  Google Scholar 

  19. V. I. Kristya and Ye Naing Tun, Bull. Russ. Acad. Sci.: Phys. 78, 549 (2014). https://doi.org/10.3103/S1062873814060161

    Article  Google Scholar 

  20. M. Riedel, H. Düsterhöft, and F. Nagel, Vacuum 61, 169 (2001). https://doi.org/10.1016/S0042-207X(01)00112-9

    Article  ADS  Google Scholar 

  21. G. G. Bondarenko, M. R. Fisher, V. I. Kristya, and V. V. Prassitski, Vacuum 73, 155 (2004). https://doi.org/10.1016/j.vacuum.2003.12.004

    Article  ADS  Google Scholar 

  22. S. Hadrath, J. Ehlbeck, G. Lieder, and F. Sigeneger, J. Phys. D: Appl. Phys. 38, 3285 (2005). https://doi.org/10.1088/0022-3727/38/17/S33

    Article  ADS  Google Scholar 

  23. K. S. Moon, J. Lee, and K.-W. Whang, J. Appl. Phys. 86, 4049 (1999). https://doi.org/10.1063/1.371328

    Article  ADS  Google Scholar 

  24. S. N. Stamenković, V. Lj. Marković, S. R. Gocić, and A. P. Jovanović, Vacuum 89, 62 (2013). https://doi.org/10.1016/j.vacuum.2012.09.010

    Article  ADS  Google Scholar 

  25. M. Suzuki, M. Sagawa, T. Kusunoki, E. Nishimura, M. Ikeda, and K. Tsuji, IEEE Trans. Electron. Dev. 59, 2256 (2012). https://doi.org/10.1109/TED.2012.2197625

    Article  ADS  Google Scholar 

  26. G. G. Bondarenko, V. I. Kristya, and D. O. Savichkin, Vacuum 149, 114 (2018). https://doi.org/10.1016/j.vacuum.2017.12.028

    Article  ADS  Google Scholar 

  27. L. Eckertová, Int. J. Electron. 69, 65 (1990). https://doi.org/10.1080/00207219008920292

    Article  Google Scholar 

  28. T. W. Hickmott, J. Appl. Phys. 87, 7903 (2000). https://doi.org/10.1063/1.373474

    Article  ADS  Google Scholar 

  29. N. V. Egorov, A. Yu. Antonov, and N. S. Demchenko, Tech. Phys. 62, 201 (2017). https://doi.org/10.1134/S1063784217020098

    Article  Google Scholar 

  30. V. Semet, C. Adessi, R. Capron, and V. T. Binh, Phys. Rev. B 75, 045430 (2007). https://doi.org/10.1116/1.2436493

    Article  ADS  Google Scholar 

  31. E. D. Savoye and D. E. Anderson, J. Appl. Phys. 38, 3245 (1967). https://doi.org/10.1063/1.1710096

    Article  ADS  Google Scholar 

  32. P. Flesch and M. Neiger, J. Phys. D: Appl. Phys. 35, 1681 (2002). https://doi.org/10.1088/0022-3727/35/14/308

    Article  ADS  Google Scholar 

  33. V. I. Kristya, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 289 (2009). https://doi.org/10.1134/S1027451009020220

    Article  Google Scholar 

  34. R. Bötticher and W. Bötticher, J. Phys. D: Appl. Phys. 33, 367 (2000). https://doi.org/10.1088/0022-3727/33/4/309

    Article  ADS  Google Scholar 

  35. G. N. Rokhlin, Discharge Light Sources (Energiya, Moscow, 1991) [in Russian].

    Google Scholar 

  36. G. G. Bondarenko, V. I. Kristya, and M. R. Fisher, Izv. Akad. Nauk, Ser. Fiz. 70, 1172 (2006).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in frameworks of the program “Organization of Scientific Researches” of the Russian Federation Ministry of Science and Higher Education in Bauman Moscow State Technical University (project 3.8408.2017/6.7) and was supported financially by the Russian Foundation for Basic Researches and the Kaluga Region Government (project no. 18-42-400001). Support from the Basic Research Program of the National Research University Higher School of Economics is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kristya.

Ethics declarations

The authors state that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, G.G., Dubinina, M.S. & Kristya, V.I. Influence of the Electric Field Enhanced Thermal Electron Emission on Temperature of the Cathode with a Thin Insulating Film in the Arc Gas Discharge. Tech. Phys. 65, 826–831 (2020). https://doi.org/10.1134/S1063784220050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050047

Navigation