Skip to main content
Log in

Mechanism of Anodic Growth of Tubular Titania

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The anodic growth conditions of titania with a tubular structure are investigated. We propose a mechanism of anodic growth of tubular titania, which presupposes that electrochemical oxidation of titanium is predominantly confined to the bottom of pores in a barrier layer, i.e., where the anodic current density is higher, which causes a temperature rise in these regions. As the barrier layer temperature exceeds a certain threshold, the structure of growing oxide changes from the commonly obtained porous honeycomb-like structure to a tubular one. The proposed mechanism is supported by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Roy, S. Berger, and P. Schmuki, Angew. Chem., Int. Ed. Eng. 50, 2904 (2011).

    Article  Google Scholar 

  2. K. Liang, B. K. Tay, O. V. Kupreeva, T. I. Orekhovskaya, S. K. Lazarouk, and V. E. Borisenko, ACS Sustainable Chem. Eng. 2, 991 (2014).

    Article  Google Scholar 

  3. J. P. Vyjayanthi, K. Sekar, and M. Thiagarajan, Int. J. Renewable Energy Technol. 6, 35 (2015).

    Article  Google Scholar 

  4. S. K. Lazarouk, O. V. Kupreeva, O. N. Dudich, V. L. Krasilnikova, and S. I. Bahayeu, in Physics, Chemistry and Application of Nanostructures, Ed. by V. Borisenko, S. Gaponenko, V. Gurin, and C. Kam (World Scientific, Singapore, 2017), p. 433.

    Google Scholar 

  5. Yu. V. Kasyuk, A. A. Maksimenko, Yu. A. Fedotova, M. Marszalek, S. K. Lazaruk, and O. V. Kupreeva, Phys. Solid State 58, 2312 (2016).

    Article  ADS  Google Scholar 

  6. S. Lazarouk, A. Muravski, D. Sasinovich, V. Chigrinov, and H. Kwok, Jpn. J. Appl. Phys. 46, 6889 (2007).

    Article  ADS  Google Scholar 

  7. S. K. Lazarouk, D. A. Sasinovich, O. V. Kupreeva, T. I. Orehovskaya, N. Rochdi, F. Arnaud d’Avitaya, and V. E. Borisenko, Thin Solid Films 526, 41 (2012).

    Article  ADS  Google Scholar 

  8. U. H. Shah, Z. Rahman, K. M. Deen, H. Asgar, and I. Shabib, J. Appl. Electrochem. 47, 1147 (2017).

    Article  Google Scholar 

  9. Y. F. Mei, X. L. Wu, X. F. Shao, G. S. Huang, and G. G. Siu, Phys. Lett. A 309, 109 (2003).

    Article  ADS  Google Scholar 

  10. K. Lee, A. Mazare, and P. Schmuki, J. Chem. Rev. 114, 9385 (2014).

    Article  Google Scholar 

  11. R. Poulomi, S. Berger, and P. Schmuki, Angew. Chem., Int. Ed. 50, 2904 (2011).

    Article  Google Scholar 

  12. S. K. Lazaruk, D. A. Tsirkunov, O. V. Kupreeva, D. A. Sasinovich, and G. G. Rabatuev, Dokl. BGUIR, No. 8, 5 (2017).

    Google Scholar 

  13. S. K. Lazarouk, D. A. Sasinovich, V. E. Borisenko, A. Muravski, V. Chigrinov, and H. S. Kwok, J. Appl. Phys. 107, 52 (2010).

    Article  Google Scholar 

  14. I. Vrublevsky, A. Ispas, K. Chernyakova, and A. Bund, J. Solid State Electrochem. 20, 2765 (2016).

    Article  Google Scholar 

  15. M. A. Mikheev and I. M. Mikheeva, Heat Transfer Basics (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

  16. A. A. Leshok, P. S. Katsuba, and V. B. Vysotski, in Physics, Chemistry and Application of Nanostructures, Ed. by V. Borisenko, S. Gaponenko, V. Gurin, and C. Kam (World Scientific, Singapore, 2011), p. 475.

    Google Scholar 

  17. S. Berger, J. Kunze, P. Schmuki, D. LeClere, A. Valota, P. Skeldon, and G. Thompson, J. Electrochem. Acta 54, 5942 (2009).

    Google Scholar 

  18. D. Guan and Y. Wang, Nanoscale 4, 2968 (2012).

    Article  ADS  Google Scholar 

  19. J. Kapusta-Kolodziej, K. Syrek, and G. D. Sulka, J. Electrochem. Soc. 165, 838 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Sci. (Phys.–Math.), prof. V. E. Borisenko for fruitful discussions, critical comments, and his active support of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kupreeva.

Ethics declarations

The authors declare that they do not have conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarouk, S.K., Kupreeva, O.V., Tsirkunov, D.A. et al. Mechanism of Anodic Growth of Tubular Titania. Tech. Phys. 65, 715–722 (2020). https://doi.org/10.1134/S1063784220050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050138

Navigation