Skip to main content
Log in

Autowave Plasticity: Principles and Possibilities

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Basic concepts of the autowave model of development of a localized plastic flow of solids of different natures are considered. It is shown that plastic deformation develops in a localized (at the macroscale level) way throughout the process. The form of the observed localization patterns is related to stages of strain hardening of the material. The patterns are projections of different modes of the localized plastic flow autowave on the observation surface. An elastoplastic strain invariant is introduced, which is considered as the main equation of the autowave plasticity model, and its physical nature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 2003; Fizmatlit, Moscow, 2007).

  2. L. B. Zuev, Autowave Plasticity. Localization and Collective Mods (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  3. L. B. Zuev, S. A. Barannikova, and A. G. Lunev, From Macro to Micro. The Extent of Plastic Deformation (Nauka, Novosibirsk, 2018) [in Russian].

    Google Scholar 

  4. A. Seeger and W. Frank, in Non-Linear Phenomena in Materials Science, Ed. by L. P. Kubin and G. Martin (Trans Tech., New York, 1987), p. 125.

    Google Scholar 

  5. H. Haken, Information and Self-Organization. A Macroscopic Approach to Complex Systems (Springer, Berlin, Heidelberg, 2006).

    MATH  Google Scholar 

  6. G. Nicolis and I. Prigogine, Exploring Complexity: An Introduction (St. Martin’s Press, New York, 1989).

    Google Scholar 

  7. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation (Springer, Berlin, 2010).

    Book  Google Scholar 

  8. W. Walter Grey, Living Brain (W. W. Co. Norton, New York, 1963).

  9. C. Fressengeas, A. Beaudoin, and D. Entemeyer, Phys. Rev. B 79, 014108 (2009). https://doi.org/10.1103/PhysRevB.79.014108

    Article  ADS  Google Scholar 

  10. M. A. Lebyodkin, N. P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V. S. Gornakov, T. A. Lebedkina, and I. V. Shashkov, Acta Mater. 60, 3729 (2012). https://doi.org/10.1016/j.actamat.2012.03.026

    Article  Google Scholar 

  11. T. V. Tret’yakova and V. E. Vil’deman, Spatial-Temporal Heterogeneity of the Processes of Inelastic Deformation of Metals (Fizmatlit, Moscow, 2017) [in Russian].

    Google Scholar 

  12. O. A. Plekhov, Tech. Phys. 56, 301 (2011). https://doi.org/10.1134/S106378421102023X

    Article  Google Scholar 

  13. L. B. Zuev, Metallofiz. Noveish. Tekhnol. 16, 31 (1994).

    Google Scholar 

  14. V. A. Vasil’ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  15. Yu. B. Rumer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics and Kinetics (NGU, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  16. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Byull. Mosk. Univ., Ser. A: Mat. Mekh. 1, 6 (1937).

    Google Scholar 

  17. A. Cottrell, Theory of Crystal Dislocations (Gordon and Breach, London, 1964).

    MATH  Google Scholar 

  18. J. Pelleg, Mechanical Properties of Materials (Springer, Dordrecht, 2013).

    Book  Google Scholar 

  19. Sh. Kh. Khannanov and S. P. Nikanorov, Tech. Phys. 52, 70 (2007).

    Article  Google Scholar 

  20. T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, and A. A. Samarskii, Structures and Chaos in Nonlinear Media (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  21. B. B. Kadomtsev, Dynamics and Information (Redakts. UFN, Moscow, 1997) [in Russian].

    Google Scholar 

  22. L. B. Zuev, Bull. Russ. Acad. Sci.: Phys. 78, 957 (2014). https://doi.org/10.3103/S1062873814100256

    Article  Google Scholar 

  23. Yu. L. Klimontovich, Introduction to Open Systems Physics (Yanus-K, Moscow, 2002) [in Russian].

    Google Scholar 

  24. L. B. Zuev, S. A. Barannikova, and A. G. Lunev, Usp. Fiz. Met. 19, 379 (2018). https://doi.org/10.15407/ufm.19.04.379

    Article  Google Scholar 

  25. L. B. Zuev, Metallofiz. Noveish. Tekhnol. 18, 55 (1996).

    Google Scholar 

  26. S. A. Barannikova, M. V. Nadezhkin, and L. B. Zuev, Tech. Phys. Lett. 37, 750 (2011). https://doi.org/10.1134/S1063785011080177

    Article  ADS  Google Scholar 

  27. L. B. Zuev, S. A. Barannikova, M. V. Nadezhkin, and V. V. Gorbatenko, Fiz. Tekh. Poluprovodn. RPI, No. 2, 49 (2014).

    Google Scholar 

  28. V. I. Danilov, A. A. Yavorskii, L. B. Zuev, and V. E. Panin, Russ. Phys. J. 34, 283 (1991).

    Google Scholar 

  29. L. B. Zuev, V. E. Gromov, V. F. Kurilov, and L. I. Gurevich, Sov. Phys. Dokl. 23, 199 (1978).

    ADS  Google Scholar 

  30. E. V. Darinskaya and A. A. Urusovskaya, Sov. Phys. Solid State 17, 1601 (1975).

    Google Scholar 

  31. E. V. Darinskaya, A. A. Urusovskaya, V. N. Opekunov, G. A. Abramchuk, and V. A. Alekhin, Sov. Phys. Solid State 20, 721 (1978).

    Google Scholar 

  32. E. V. Darinskaya, A. A. Urusovskaya, V. I. Al’shits, Yu. I. Meshcheryakov, V. N. Alekhin, and R. Voska, Sov. Phys. Solid State 25, 2092 (1983).

    Google Scholar 

  33. M. N. Stepnov, Probabilistic Methods for Assessing the Characteristics of the Mechanical Properties of Materials (Nauka, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  34. V. I. Al’shits and V. L. Indenbom, in Dislocations in Solids (Elsevier, Amsterdam, 1986), p. 43.

    Google Scholar 

  35. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).

    Google Scholar 

Download references

Funding

This study was performed within the Program of Fundamental Scientific Research of State Academies of Sciences for 2013–2020 (line of research III.23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Ethics declarations

The authors declare that they do not have a conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Barannikova, S.A. Autowave Plasticity: Principles and Possibilities. Tech. Phys. 65, 741–748 (2020). https://doi.org/10.1134/S1063784220050266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050266

Navigation