Skip to main content
Log in

Photoluminescence of (Zn, Pb, Mn)S Quantum Dots in Polyacrylate Matrix

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Solutions of (Zn, Pb, Mn)S quantum dots with different molar ratios between cations are produced by colloidal synthesis in a methyl methacrylate (MMA) medium. By the thermal polymerization of MMA in a block, the colloidal solutions are converted into the vitreous state. The optical transparency of the poly(MMA)/(Zn, Pb, Mn)S composites at the wavelengths >500 nm reaches 90% at a thickness of the absorbing layer up to 5 mm. The photoluminescence of the composites in the spectral range 400–480 nm is defined by the recombination of electrons at the levels of defects of the ZnS crystal structure, and photoluminescence in the range 520–620 nm by the 4T16A1 electronic transition in Mn2+ ions. Photoluminescence excitation is a result of interband transitions in ZnS, with energy transfer from the conduction band of ZnS to the levels of Mn2+ ions. The luminescence spectrum depends on the molar ratio between Mn2+ and Pb2+ ions, the order of introduction of substances into the reaction mixture, and the excitation-radiation wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. K. Morozova and V. A. Kuznetsov, Zinc Sulfide. Production and Optical Properties (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).

    Article  ADS  Google Scholar 

  3. V. G. Klyuev, T. L. Maiorova, M. Fam Tkhi Khai, and V. N. Semenov, Kondens. Sredy Mezhfaz. Granitsy 11 (1), 58 (2009).

    Google Scholar 

  4. T. A. Kuchakova, G. V. Vesna, and V. A. Makara, Semiconductors 38, 1275 (2004).

    Article  ADS  Google Scholar 

  5. Yu. Yu. Bacherikov, I. P. Vorona, S. V. Optasyuk, V. E. Rodionov, and A. A. Stadnik, Semiconductors 38, 987 (2004).

    Article  ADS  Google Scholar 

  6. N. K. Morozova, I. A. Karetnikov, D. A. Mideros, E. M. Gavrishchuk, and V. B. Ikonnikov, Semiconductors 40, 1155 (2006).

    Article  ADS  Google Scholar 

  7. O. V. Ovchinnikov, A. N. Latyshev, and M. S. Smirnov, Kondens. Sredy Mezhfaz. Granitsy 7, 413 (2005).

    Google Scholar 

  8. J. K. Saluja, Y. Parganiha, N. Tiwari, V. Dubey, R. Tiwari, and A. Prabhath, Optik 127, 7958 (2016).

    Article  ADS  Google Scholar 

  9. M. F. Bulanyi, B. A. Polezhaev, and T. A. Prokof’ev, Semiconductors 32, 603 (1998).

    Article  ADS  Google Scholar 

  10. S. V. Svechnikov, L. V. Zav’yalova, N. N. Roshchina, V. E. Rodionov, V. S. Khomchenko, L. I. Berezhinskii, I. V. Prokopenko, P. M. Litvin, O. S. Litvin, Yu. V. Kolomzarov, and Yu. A. Tsyrkunov, Semiconductors 34, 1128 (2000).

    Article  ADS  Google Scholar 

  11. M. F. Bulanuy, A. V. Kovalenko, B. A. Polezhaev, and T. A. Prokof’yev, Semiconductors 43, 716 (2009).

    Article  ADS  Google Scholar 

  12. K. A. Ogurtsov, M. M. Sychev, V. V. Bakhmet’ev, V. N. Korobko, A. I. Ponyaev, F. I. Vysikailo, and V. V. Belyaev, Inorg. Mater. 52, 1115 (2016).

    Article  Google Scholar 

  13. V. F. Agekyan, Phys. Solid State 44, 2013 (2002).

    Article  ADS  Google Scholar 

  14. Yu. G. Galyametdinov, D. O. Sagdeev, V. K. Voronkova, A. A. Sukhanov, and R. R. Shamilov, Russ. Chem. Bull. 67, 172 (2018).

    Article  Google Scholar 

  15. V. N. Pak and A. N. Levkin, Izv. RGPU im. A. I. Gertsena 64, 74 (2008).

    Google Scholar 

  16. T. N. Shcherba, Extended Abstract of Cand. Sci. Dissertation (Lomonosov Mosc. State Univ., Moscow, 2011).

  17. S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, Huayong Pan, and Dapeng Yu, Appl. Phys. Lett. 80, 3605 (2002).

    Article  ADS  Google Scholar 

  18. I. Ahemen and D. K. De, Adv. Sci. Eng. Med. 5, 1 (2013).

    Article  Google Scholar 

  19. K. Zhang, Y. Yu, and S. Sun, Appl. Surf. Sci. 276, 333 (2013).

    Article  ADS  Google Scholar 

  20. J. Planelles-Aragó, B. Julián-López, E. Cordoncillo, P. Escribano, F. Pelle[acute], B. Viana, and C. Sanchez, J. Mater. Chem. 18, 5193 (2008).

    Article  Google Scholar 

  21. D. M. Sagdeev, R. R. Shamilov, V. K. Voronkova, A. A. Sukhanov, and Yu. G. Galyametdinov, Vestn. Kazan. Tekhnol. Univ. 21 (10), 21 (2018).

    Google Scholar 

  22. D. O. Sagdeev, Extended Abstract of Cand. Sci. Dissertation (Kazan Sci. Technol. Univ., Kazan’, 2019).

  23. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, Opt. Express 21, 8214 (2013).

    Article  ADS  Google Scholar 

  24. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, IEEE J. Quant. Electron. 37, 1059 (2001).

    Article  ADS  Google Scholar 

  25. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, Science (Washington, DC, U. S.) 324 (5934), 1542 (2009).

    Article  ADS  Google Scholar 

  26. I. Kang and F. W. Wise, J. Opt. Soc. Am. B 14, 1632 (1997).

    Article  ADS  Google Scholar 

  27. B. Ramezanpour, H. M. Chenaru, and M. K. Sadigh, Opt. Mater. 73, 132 (2017).

    Article  ADS  Google Scholar 

  28. K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, Appl. Phys. Lett. 75, 3060 (1999).

    Article  ADS  Google Scholar 

  29. C. R. Ghosh and S. Paria, Chem. Rev. 112, 2373 (2011).

    Article  Google Scholar 

  30. P. Mélinon, S. Begin-Colin, J. L. Duvail, F. Gauffre, N. H. Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, and B. Warot-Fonrose, Phys. Rep. 543, 163 (2014).

    Article  Google Scholar 

  31. D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, J. Alloys Compd. 636, 395 (2015).

    Article  Google Scholar 

  32. M. B. Gawande, A. Goswami, R. Zboril, T. Asefa, H. Guo, D.-L. Peng, A. V. Biradar, and R. S. Varma,Chem. Soc. Rev. 44, 7540 (2015).

    Article  Google Scholar 

  33. A. M. El-Toni, M. A. Habila, J. P. Labis, Z. A. Alothman, M. Alhoshan, A. A. Elzatahry, and F. Zhang, Nanoscale 8, 2510 (2016).

    Article  ADS  Google Scholar 

  34. H. Zhao and F. Rosei, Chem. 3, 229 (2017).

    Article  Google Scholar 

  35. H. R. Feng, L. Tang, G. M. Zeng, X. Ren, B. Song, C. Liang, M. Y. Wei, J. F. Yu, Y. Zhou, and Y. C. Deng, Adv. Colloid Interface 267, 26 (2019).

    Article  Google Scholar 

  36. T. A. Esquivel-Castro, M. C. Ibarra-Alonso, J. Oliva, and A. Martínez-Luévanos, Mater. Sci. Eng. C 96, 915 (2019).

    Article  Google Scholar 

  37. P. K. Kalambate, Dhanjai, H. Zhimei, Y. Li, S. Yue, X. Meilan, H. Yunhui, and S. Ashwini, Trends Anal. Chem. 115, 147 (2019).

    Article  Google Scholar 

  38. A. A. Biryukov, T. I. Izaak, V. A. Svetlichnyi, and E. Yu. Gotovtseva, Izv. Vyssh. Uchebn. Zaved., Fiz. 52 (12/2), 16 (2009).

  39. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An, Opt. Express 21, 8214 (2013).

    Article  ADS  Google Scholar 

  40. V. P. Smagin, A. A. Isaeva, N. S. Eremina, and A. A. Biryukov, Russ. J. Appl. Chem. 88, 1020 (2015).

    Article  Google Scholar 

  41. V. P. Smagin, N. S. Eremina, A. A. Isaeva, and Yu. V. Lyakhova, Inorg. Mater. 53, 263 (2017).

    Article  Google Scholar 

  42. M. A. Jafarov, E. F. Nasirov, and R. S. Jafarli, Inorg. Mater. 53, 39 (2017).

    Article  Google Scholar 

  43. V. P. Smagin, N. S. Eremina, and M. S. Leonov, Inorg. Mater. 54, 103 (2018).

    Article  Google Scholar 

  44. V. P. Smagin, N. S. Eremina, and M. S. Leonov, Semiconductors 52, 1022 (2018).

    Article  ADS  Google Scholar 

  45. A. A. Isaeva and V. P. Smagin, Russ. J. Inorg. Chem. 64, 1199 (2019).

    Article  Google Scholar 

  46. V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, Russ. J. Inorg. Chem. 60, 1588 (2015).

    Article  Google Scholar 

  47. V. P. Smagin, D. A. Davydov, and N. M. Unzhakova, RF Patent No. 2561287 (2015).

  48. V. P. Smagin and G. M. Mokrousov, Physico-Chemical Aspects of the Formation and Properties of Optically Transparent Metal-Containing Polymeric Materials (Barnaul, Altaisk. Univ., Barnaul, 2014) [in Russian]. http://elibrary.asu.ru/xmlui/bitstream/handle/asu/840/read.7book?sequence=1.

  49. H. Ehrlich, T. Shcherba, M. Zhilenko, and G. Lisichkin, Mater. Lett. 65, 107 (2011).

    Article  Google Scholar 

  50. N. G. Piven, L. P. Shcherbak, P. I. Feichuk, S. M. Kalitchuk, S. G. Krylyuk, and D. V. Korbutyak, Kondens. Sredy Mezhfaz. Granitsy 8, 315 (2006).

    Google Scholar 

  51. V. P. Denks, M. P. Kerikmyae, A. L. Lust, and T. I. Savikhina, Phys. Solid State 42, 261 (2000).

    Article  ADS  Google Scholar 

  52. T. A. Onufrieva, T. I. Krasnenko, N. A. Zaitseva, I. V. Baklanova, M. V. Rotermel’, I. V. Ivanova, I. D. Popov, and R. F. Samigullina, Phys. Solid State 61, 806 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-33-90023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Smagin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, A.A., Smagin, V.P. Photoluminescence of (Zn, Pb, Mn)S Quantum Dots in Polyacrylate Matrix. Semiconductors 54, 511–517 (2020). https://doi.org/10.1134/S106378262005005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262005005X

Keywords:

Navigation