Skip to main content
Log in

Influence of a Nanoporous Silicon Layer on the Practical Implementation and Specific Features of the Epitaxial Growth of GaN Layers on SiC/por-Si/c-Si Templates

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A set of structural and spectroscopic methods of diagnostics is used to study the influence of a nanoporous silicon (por-Si) transition layer on the practical implementation and specific features of growth of GaN layers on SiC/por-Si/c-Si templates by molecular-beam epitaxy with the plasma activation of nitrogen. It is shown that a por-Si transition layer introduced into a template, in which a 3C-SiC layer is created by the method of atom substitution, offers unquestionable advantages over standard silicon substrates. Specifically, such an approach makes it possible to lower the level of stresses in the crystal lattice of the epitaxial GaN layer by about 90% and to reduce the fraction of vertical dislocations in the GaN layer. The GaN layer is grown on the surface of the SiC layer, which in turn is on the surface of the SiC/por-Si/c-Si template. It is found for the first time that the use of the SiC/por-Si/c-Si template brings about the formation of a qualitatively more uniform GaN layer free of visible extended defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. J. Baliga, Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications (Woodhead, Cambridge, MA, 2019).

    Google Scholar 

  2. M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).

    Google Scholar 

  3. S. Leone, F. Benkhelifa, L. Kirste, C. Manz, R. Quay, and O. Ambacher, J. Appl. Phys. 125, 235701 (2019). https://doi.org/10.1063/1.5092653

    Article  ADS  Google Scholar 

  4. G. X. Chen, X. G. Li, Y. P. Wang, J. N. Fry, and H. P. Cheng, Phys. Rev. B 95, 045302 (2017). https://doi.org/10.1103/PhysRevB.95.045302

    Article  ADS  Google Scholar 

  5. J. T. Chen, J. Bergsten, J. Lu, E. Janzén, M. Thorsell, L. Hultman, N. Rorsman, and O. Kordina, Appl. Phys. Lett. 113, 041605 (2018). https://doi.org/10.1063/1.5042049

    Article  ADS  Google Scholar 

  6. M. N. Abd. Rahman, Y. Yusuf, M. Mansor, and A. Shuhaimi, Appl. Surf. Sci. 362, 572 (2016). https://doi.org/10.1016/j.apsusc.2015.10.226

    Article  Google Scholar 

  7. S. Kukushkin, A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, and K. Tcarik, Rev. Adv. Mater. Sci. 17, 1 (2008).

    Google Scholar 

  8. Y. Tian, Y. Shao, Y. Wu, X. Hao, L. Zhang, Y. Dai, and Q. Huo, Sci. Rep. 5, 10748 (2015). https://doi.org/10.1038/srep10748

    Article  ADS  Google Scholar 

  9. S. A. Kukushkin, A. M. Mizerov, A. V. Osipov, A. V. Redkov, and S. N. Timoshnev, Thin Solid Films 646, 158 (2018). https://doi.org/10.1016/j.tsf.2017.11.037

    Article  ADS  Google Scholar 

  10. A. Gkanatsiou, Ch. B. Lioutas, N. Frangis, E. K. Polychroniadis, P. Prystawko, and M. Leszczynski, Superlatt. Microstruct. 103, 376 (2017). https://doi.org/10.1016/j.spmi.2016.10.024

    Article  ADS  Google Scholar 

  11. Y. Sugawara, Y. Ishikawa, A. Watanabe, M. Miyoshi, and T. Egawa, J. Cryst. Growth 468, 536 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.010

    Article  ADS  Google Scholar 

  12. P. V. Seredin, D. L. Goloshchapov, A. S. Lenshin, A. M. Mizerov, and D. S. Zolotukhin, Phys. E (Amsterdam, Neth.) 104, 101 (2018). https://doi.org/10.1016/j.physe.2018.07.024

  13. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, A. V. Zhabotinskiy, and D. N. Nikolaev, Phys. E (Amsterdam, Neth.) 97, 218 (2018). https://doi.org/10.1016/j.physe.2017.11.018

  14. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, D. N. Nikolaev, and A. V. Zhabotinskiy, Phys. B (Amsterdam, Neth.) 530, 30 (2018). https://doi.org/10.1016/j.physb.2017.11.028

  15. P. V. Seredin, A. S. Lenshin, A. M. Mizerov, H. Leiste, and M. Rinke, Appl. Surf. Sci. 476, 1049 (2019). https://doi.org/10.1016/j.apsusc.2019.01.239

    Article  ADS  Google Scholar 

  16. S. A. Kukushkin, A. M. Mizerov, A. V. Osipov, A. V. Redkov, R. S. Telyatnik, and S. N. Timoshnev, J. Phys.: Conf. Ser. 917, 032038 (2017). https://doi.org/10.1088/1742-6596/917/3/032038

    Article  Google Scholar 

  17. Y. T. Chiang, Y. K. Fang, T. H. Chou, F. R. Juang, K. C. Hsu, T. C. Wei, C. I. Lin, C. W. Chen, and C. Y. Liang, IEEE Sens. J. 10, 1291 (2010). https://doi.org/10.1109/JSEN.2009.2037310

    Article  ADS  Google Scholar 

  18. S. A. Kukushkin, Sh. Sh. Sharofidinov, A. V. Osipov, A. V. Redkov, V. V. Kidalov, A. S. Grashchenko, I. P. Soshnikov, and A. F. Dydenchuk, ECS J. Solid State Sci. Technol. 7, 480 (2018). https://doi.org/10.1149/2.0191809jss

    Article  Google Scholar 

  19. A. M. Mizerov, S. N. Timoshnev, M. S. Sobolev, E. V. Nikitina, K. Yu. Shubina, T. N. Berezovskaia, I. V. Shtrom, and A. D. Bouravleuv, Semiconductors 52, 1529 (2018). https://doi.org/10.1134/S1063782618120175

    Article  ADS  Google Scholar 

  20. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014). https://doi.org/10.1134/S1063783414080137

    Article  ADS  Google Scholar 

  21. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014). https://doi.org/10.1088/0022-3727/47/31/313001

    Article  ADS  Google Scholar 

  22. A. S. Lenshin, P. V. Seredin, B. L. Agapov, D. A. Minakov, and V. M. Kashkarov, Mater. Sci. Semicond. Process. 30, 25 (2015). https://doi.org/10.1016/j.mssp.2014.09.040

    Article  Google Scholar 

  23. A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, B. L. Agapov, D. A. Minakov, V. N. Tsipenyuk, and E. P. Domashevskaya, Tech. Phys. 59, 224 (2014). https://doi.org/10.1134/S1063784214020145

    Article  Google Scholar 

  24. V. M. Kashkarov, A. S. Len’shin, P. V. Seredin, B. L. Agapov, and V. N. Tsipenuk, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 6, 776 (2012). https://doi.org/10.1134/S1027451012090078

    Article  Google Scholar 

  25. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998). https://doi.org/10.1063/1.122012

    Article  ADS  Google Scholar 

  26. P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Len’shin, I. N. Arsent’ev, D. A. Vinokurov, I. S. Tarasov, H. Leiste, and T. Prutskij, Phys. Solid State 55, 2161 (2013). https://doi.org/10.1134/S1063783413100296

    Article  ADS  Google Scholar 

  27. P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, A. S. Lenshin, M. S. Smirnov, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 46, 719 (2012). https://doi.org/10.1134/S106378261206019X

    Article  ADS  Google Scholar 

  28. P. V. Seredin, P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and T. Prutskij, Semiconductors 47, 1 (2013). https://doi.org/10.1134/S106378261301020X

    Article  ADS  Google Scholar 

  29. H. Morkoç, Handbook of Nitride Semiconductors and Devices: Materials Properties, Physics and Growth, 1st ed. (Wiley, Hoboken, 2008). https://doi.org/10.1002/9783527628438

  30. O. Madelung, U. Rössler, and M. Schulz, Group IV Elements, IV–IV and III–V Compounds. Part A: Lattice Properties (Springer, Berlin, Heidelberg, 2001), p. 1. https://doi.org/10.1007/10551045_2

  31. N. V. Safriuk, Semicond. Phys. Quant. Electron. Optoelectron. 16, 265 (2013). https://doi.org/10.15407/spqeo16.03.265

    Article  Google Scholar 

  32. V. V. Kidalov, S. A. Kukushkin, A. Osipov, A. Redkov, A. S. Grashchenko, and I. P. Soshnikov, Mater. Phys. Mech. 36, 39 (2018). https://doi.org/10.18720/MPM.3612018_4

    Article  Google Scholar 

  33. V. V. Kidalov, S. A. Kukushkin, A. V. Osipov, A. V. Redkov, A. S. Grashchenko, I. P. Soshnikov, M. E. Boiko, M. D. Sharkov, and A. F. Dyadenchuk, ECS J. Solid State Sci. Technol. 7, 158 (2018). https://doi.org/10.1149/2.0061804jss

    Article  Google Scholar 

  34. S. A. Kukushkin and A. V. Osipov, Phys. B (Amsterdam, Neth.) 512, 26 (2017). https://doi.org/10.1016/j.physb.2017.02.018

  35. H. Ishikawa, K. Shimanaka, F. Tokura, Y. Hayashi, Y. Hara, and M. Nakanishi, J. Cryst. Growth 310, 4900 (2008). https://doi.org/10.1016/j.jcrysgro.2008.08.030

    Article  ADS  Google Scholar 

  36. N. Chaaben, J. Yahyaoui, M. Christophersen, T. Boufaden, and B. El Jani, Superlatt. Microstruct. 40, 483 (2006). https://doi.org/10.1016/j.spmi.2006.09.022

    Article  ADS  Google Scholar 

  37. H. Ji, W. Liu, Y. Li, S. Li, L. Lei, Z. Shi, and X. Li, J. Lumin. 199, 194 (2018). https://doi.org/10.1016/j.jlumin.2018.03.049

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf) of Forschungszentrum Karlsruhe for providing access to the equipment at their laboratories.

Funding

The study was supported by the Russian Science Foundation, project no. 19-72-10007.

Access to the equipment of KNMF was supported by the President of the Russian Federation, grant no. MD-42.2019.2.

The part of the study performed by S.A. Kukushkin was supported by the Presidium of the Russian Academy of Sciences, program “Nanostructures: Physics, Chemistry, Biology, and Foundations of Technologies”, project no. NIOKTR AAAA-A19-119012490107-5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Seredin, A. M. Mizerov or I. N. Arsentyev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredin, P.V., Goloshchapov, D.L., Zolotukhin, D.S. et al. Influence of a Nanoporous Silicon Layer on the Practical Implementation and Specific Features of the Epitaxial Growth of GaN Layers on SiC/por-Si/c-Si Templates. Semiconductors 54, 596–608 (2020). https://doi.org/10.1134/S1063782620050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620050115

Keywords:

Navigation