Skip to main content
Log in

Formation of the ω Phase in the Titanium—Iron System under Shear Deformation

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of the phase composition on the α/β-Ti(Fe)→ω-Ti(Fe) transformation in the Ti-4 wt % Fe alloy under shear strain with high-pressure torsion (HPT) has been studied. For shear deformation by means of HPT, two initial states of the alloy were used, which significantly differed in the morphology of the phases and the concentration of iron atoms in the β phase. During HPT, a stationary state occurred in both sample series, which is characterized by the presence of a single ω phase containing 4 wt % Fe and by a grain size of about 200 nm. Thus, the HPT state is equifinal and independent of the initial phase composition of the samples. It was found that under the influence of HPT in Ti-4 wt % Fe alloys not only martensitic (shear) transformation into the ω phase occurs, but also a significant mass transfer of atoms of the alloying element. An analysis of the change in the torsion torque directly in the HPT process made it possible to estimate the rate of deformation-induced mass transfer. It is 18–19 orders of magnitude higher than the rate of conventional thermal diffusion at the processing temperature THPT = 30°C, while it is close to the diffusivity values at 700–800°C. This is because HPT increases the concentration of lattice defects, which in turn is equivalent to an increase in temperature. A similar combination of accelerated mass transfer during HPT and martensitic (shear) transformation was previously observed in copper-based shape memory alloys, but for the first time studied for the formation of ω-phase in titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Pabi, J. Joardar, and B. S. Murty, Proc. Indian Nat.Sci. Acad. A 67, 1 (2001).

    Google Scholar 

  2. X. Sauvage, A. Chbihi, and X. Quelennec, J. Phys.: Conf. Ser. 240, 012003 (2010).

    Google Scholar 

  3. V. I. Levitas and O. M. Zarechnyy, Phys. Rev. B 82, 174123 (2010).

    ADS  Google Scholar 

  4. B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, O. A. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zieba, and B. Baretzky, Int. J. Mater. Res. 106, 657 (2015).

    Google Scholar 

  5. M. Javanbakht and V. I. Levitas, Phys. Rev. B 94, 214104 (2016).

    ADS  Google Scholar 

  6. B. B. Straumal, A. R. Kilmametov, A. Korneva, A. A. Mazilkin, P. B. Straumal, P. Zięba, and B. Baretzky, J. Alloys Compd. 707, 20 (2017).

    Google Scholar 

  7. V. I. Levitas, Mater. Trans. 60, 1294 (2019).

    Google Scholar 

  8. V. I. Levitas, Phys. Rev. Lett. 95, 075701 (2005).

    ADS  Google Scholar 

  9. S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, Acta Mater. 53, 2703 (2005).

    Google Scholar 

  10. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping, and K. Hono, Acta. Mater. 49, 389 (2001).

    Google Scholar 

  11. A. A. Mazilkin, G. E. Abrosimova, S. G. Protasova, B. B. Straumal, G. Schütz, S. V. Dobatkin, and A. S. Bakai, J. Mater. Sci. 46, 4336 (2011).

    ADS  Google Scholar 

  12. V. I. Levitas, Y. Ma, E. Selvi, J. Wu, and J. A. Patten, Phys. Rev. B 85, 054114 (2012).

    ADS  Google Scholar 

  13. A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, and S. V. Dobatkin, Bull. Russ. Acad. Sci.: Phys. 73, 1233 (2009).

    Google Scholar 

  14. S. Hobor, Á. Revész, A. P. Zhilyaev, and Zs. Kovács, Rev. Adv. Mater. Sci. 18, 590 (2008).

    Google Scholar 

  15. B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov, and R. Z. Valiev, Acta Mater. 52, 4469 (2004).

    Google Scholar 

  16. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, and R. Valiev, J. Mater. Sci. 47, 360 (2012).

    ADS  Google Scholar 

  17. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, L. Kurmanaeva, Yu. Ivanisenko, B. Baretzky, A. Korneva, P. Zięba, and D. A. Molodov, Mater. Lett. 118, 111 (2014).

    Google Scholar 

  18. B. B. Straumal, A. A. Mazilkin, B. Baretzky, E. Rabkin, and R. Z. Valiev, Mater. Trans. 53, 63 (2012).

    Google Scholar 

  19. Y. Ivanisenko, I. MacLaren, X. Sauvage, R. Z. Valiev, and H.-J. Fecht, Acta Mater. 54, 1659 (2006).

    Google Scholar 

  20. M. T. Pérez-Prado and A. P. Zhilyaev, Phys. Rev. Lett. 102, 175504 (2009).

    ADS  Google Scholar 

  21. B. Feng and V. I. Levitas, Mater. Sci. Eng. A 680, 130 (2017).

    Google Scholar 

  22. K. Edalati, E. Matsubara, and Z. Horita, Metall. Mater. Trans. A 40, 2079 (2009).

    Google Scholar 

  23. B. Feng, V. I. Levitas, and M. Kamrani, Mater. Sci. Eng. A 731, 623 (2018).

    Google Scholar 

  24. Y. Ivanisenko, A. Kilmametov, H. Roesner, and R. Valiev, Int. J. Mater. Res. 99, 36 (2008).

    Google Scholar 

  25. B. Feng, V. I. Levitas, and W. Li, Int. J. Plast. 113, 236 (2019).

    Google Scholar 

  26. A. Kilmametov, Yu. Ivanisenko, A. A. Mazilkin, B. B. Straumal, A. S. Gornakova, O. B. Fabrichnaya, M. J. Kriegel, D. Rafaja, and H. Hahn, Acta Mater. 144, 337 (2018).

    Google Scholar 

  27. A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, and B. Baretzky, Mater. Trans. 60, 1489 (2019).

    Google Scholar 

  28. B. B. Straumal, A. R. Kilmametov, G. A. López, I. Lopez-Ferreño, M. L. No, J. San Juan, H. Hahn, and B. Baretzky, Acta Mater. 125, 274 (2017).

    Google Scholar 

  29. B. B. Straumal, V. Pontikis, A. R. Kilmametov, A. A. Mazilkin, S. V. Dobatkin, and B. Baretzky, Acta Mater. 122, 60 (2017).

    Google Scholar 

  30. B. B. Straumal, A. R. Kilmametov, I. A. Mazilkin, A. Korneva, P. Zięba, and B. Baretzky, JETP Lett. 110, 624 (2019).

    ADS  Google Scholar 

  31. B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, K. I. Kolesnikova, A. Korneva, P. Zięba, and B. Baretzky, JETP Lett. 100, 376 (2014).

    ADS  Google Scholar 

  32. B. B. Straumal, A. R. Kilmametov, I. A. Mazilkin, A. Korneva, P. Zięba, and B. Baretzky, JETP Lett. 110, 624 (2019).

    ADS  Google Scholar 

  33. L. von Bertalanffy, Science (Washington, DC, U. S.) 111, 23 (1950).

    ADS  Google Scholar 

  34. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, 2nd ed. (ASM Int., Materials Park, OH, 1990).

    Google Scholar 

  35. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010).

    Google Scholar 

  36. B. B. Straumal, A. S. Gornakova, Y. O. Kucheev, B. Baretzky, and A. N. Nekrasov, J. Mater. Eng. Perfom. 21, 721 (2012).

    Google Scholar 

  37. B. B. Straumal, B. S. Bokstein, A. B. Straumal, and A. L. Petelin, JETP Lett. 88, 537 (2008).

    ADS  Google Scholar 

  38. O. A. Kogtenkova, B. B. Straumal, S. G. Protasova, A. S. Gornakova, P. Zięba, and T. Czeppe, JETP Lett. 96, 380 (2012)].

    ADS  Google Scholar 

  39. B. B. Straumal, O. A. Kogtenkova, K. I. Kolesnikova, A. B. Straumal, M. F. Bulatov, and A. N. Nekrasov, JETP Lett. 100, 535 (2014).

    ADS  Google Scholar 

  40. B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, A. S. Gornakova, A. A. Mazilkin, M. J. Kriegel, O. B. Fabrichnaya, B. Baretzky, and H. Hahn, Adv. Eng. Mater. 17, 1835 (2015).

    Google Scholar 

  41. A. S. Gornakova, S. I. Prokofiev, B. B. Straumal, and K. I. Kolesnikova, Russ. J. Non-Ferr. Met. 57, 703 (2016).

    Google Scholar 

  42. A. S. Gornakova, B. B. Straumal, A. N. Nekrasov, A. Kilmametov, and N. S. Afonikova, J. Mater. Eng. Perform. 27, 4989 (2018).

    Google Scholar 

  43. A. S. Gornakova, A. B. Straumal, I. I. Khodos, I. B. Gnesin, A. A. Mazilkin, N. S. Afonikova, and B. B. Straumal, J. Appl. Phys. 125, 082522 (2019).

    Google Scholar 

  44. A. S. Gornakova, B. B. Straumal, and S. I. Prokofiev, Adv. Eng. Mater. 20, 1800510 (2018).

    Google Scholar 

  45. B. B. Straumal, P. V. Protsenko, A. B. Straumal, A. O. Rodin, Yu. O. Kucheev, A. M. Gusak, and V. A. Murashov, JETP Lett. 96, 582 (2012).

    ADS  Google Scholar 

  46. G. B. Gibbs, D. Graham, and D. H. Tomlin, Philos. Mag. 8, 1269 (1963).

    ADS  Google Scholar 

  47. H. Nakajima, M. Koiwa, and S. Ono, Scr. Metall. 17, 1431 (1983).

    Google Scholar 

  48. B. B. Straumal, L. M. Klinger, and L. S. Shvindlerman, Scr. Metall. 17, 275 (1983).

    Google Scholar 

  49. D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Metall. 18, 207 (1984).

    Google Scholar 

  50. H. Araki, Y. Minamino, T. Yamane, Y. Shirai, and Y. Miyamoto, Defect Dif. Forum 143–147, 125 (1997).

    Google Scholar 

  51. H. Araki, Y. Minamino, T. Yamane, S. Saji, S. Ogino, and Y. Miyamoto, J. Jpn. Inst. Met. Mater. 57, 501 (1993).

    Google Scholar 

  52. H. Araki, Y. Shirai, T. Yamane, and Y. Miyamoto, Rev. High Press. Sci. Technol. 7, 676 (1998).

    Google Scholar 

  53. P. Knorr, J. Jun, W. Lojkowski, and Chr. Herzig, Phys. Rev. B 57, 334 (1998).

    ADS  Google Scholar 

  54. H. Araki, T. Yaman, T. Nakatuka, and Y. Minamino, Z. Metallkd. 97, 22 (2006).

    Google Scholar 

  55. U. Köhler and Ch. Herzig, Phys. Status Solidi B 144, 243 (1987).

    ADS  Google Scholar 

  56. B. Straumal, E. Rabkin, W. Gust, and B. Predel, Acta Metall. Mater. 43, 1817 (1995).

    ADS  Google Scholar 

  57. E. Rabkin, B. Straumal, V. Semenov, W. Gust, and B. Predel, Acta Metall. Mater. 43, 3075 (1995).

    Google Scholar 

  58. R. F. Peart, Phys. Status Solidi 20, 545 (1967).

    Google Scholar 

  59. S. D. Gertsriken and M. P. Pryanishnikov, Fiz. Met. Metalloved. 2, 297 (1960).

    Google Scholar 

  60. R. N. Jeffery, Phys. Rev. B 3, 4044 (1971).

    ADS  Google Scholar 

  61. T. Kim, G. Ouyang, J. D. Poplawsky, M. J. Kramer, V. I. Levitas, J. Cui, and L. Zhou, J. Alloys Compd. 808, 151743 (2019).

    Google Scholar 

  62. M. Kamrani, V. I. Levitas, and B. Feng, Mater. Sci. Eng. A 705, 219 (2017).

    Google Scholar 

  63. V. I. Levitas and A. M. Roy, Phys. Rev. B 91, 174109 (2015).

    ADS  Google Scholar 

  64. V. I. Levitas, Int. J. Plast. 106, 164 (2018).

    Google Scholar 

Download references

Funding

This work was partially carried out within the framework of the state task of the Institute of Solid State Physics and the Chernogolovka Scientific Center of the Russian Academy of Sciences with the support of the Scientific Facility Center at the Institute of Solid State Physics, as well as with the financial assistance of the Russian Foundation for Basic Research (project nos. 18-33-00473 and 19-58-06002) and the German National Research Society (grant nos. RA 1050/20-1, IV 98/5-1, HA 1344/32-1, FA 999/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 10, pp. 674–681.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straumal, B.B., Kilmametov, A.R., Mazilkin, A.A. et al. Formation of the ω Phase in the Titanium—Iron System under Shear Deformation. Jetp Lett. 111, 568–574 (2020). https://doi.org/10.1134/S0021364020100033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020100033

Navigation