Skip to main content
Log in

Collapse of the Fano Resonance Caused by the Nonlocality of the Majorana State

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Owing to the nonlocal character of the Majorana state, the corresponding excitations are of great interest. It is demonstrated that the direct consequence of such nonlocality is the collapse of the Fano resonance manifesting itself in the conductance of an asymmetric interference device, the arms of which are connected by a one-dimensional topological superconductor. In the framework of the spinless model, it is shown that the predicted effect is associated with an increase in the multiplicity of the degeneracy of the zero-energy state of the structure arising at the critical point of the Kitaev model. Such an increase leads to the formation of a bound state in the continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Neumann and E. Wigner, Phys. Z 30, 465 (1929).

    Google Scholar 

  2. C. W. Hsu, B. Zhen, A. Douglas Stone, J. D. Joannopoulos, and M. Soljacic, Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  3. R. L. Schult, D. G. Ravenhall, and H. W. Wyld, Phys. Rev. B 39, 5476 (1989).

    Article  ADS  Google Scholar 

  4. H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).

    Article  ADS  Google Scholar 

  5. J. M. Foley, S. M. Young, and J. D. Phillips, Phys. Rev. B 89, 165111 (2014).

    Article  ADS  Google Scholar 

  6. M. Yu. Kagan and S. V. Aksenov, JETP Lett. 107, 493 (2018).

    Article  ADS  Google Scholar 

  7. M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).

    Article  ADS  Google Scholar 

  8. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  9. P. A. Orellana, M. L. Ladron de Guevara, and F. Claro, Phys. Rev. B 70, 233315 (2004).

    Article  ADS  Google Scholar 

  10. H. Lu, R. Lu, and B.-F. Zhu, Phys. Rev. B 71, 235320 (2005).

    Article  ADS  Google Scholar 

  11. R. H. Dicke, Phys. Rev. 89, 472 (1953).

    Article  ADS  Google Scholar 

  12. C. S. Kim and A. M. Satanin, J. Exp. Theor. Phys. 88, 118 (1999).

    Article  ADS  Google Scholar 

  13. C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, J. Exp. Theor. Phys. 89, 144 (1999).

    Article  ADS  Google Scholar 

  14. W. Gong, Y. Han, and G. Wei, J. Phys.: Condens. Matter 21, 175801 (2009).

    ADS  Google Scholar 

  15. A. F. Sadreev and T. V. Babushkina, JETP Lett. 88, 360 (2008).

    Article  Google Scholar 

  16. M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, Phys. Rev. B 95, 035411 (2017).

    Article  ADS  Google Scholar 

  17. M. L. Vallejo, M. L. Ladron de Guevara, and P. A. Orellana, Phys. Lett. A 374, 4928 (2010).

    Article  ADS  Google Scholar 

  18. M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, J. Magn. Magn. Mater. 440, 15 (2017).

    Article  ADS  Google Scholar 

  19. H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999).

    Article  ADS  Google Scholar 

  20. A. F. Sadreev and I. Rotter, J. Phys. A: Math. Gen. 36, 11413 (2003).

    Article  ADS  Google Scholar 

  21. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  22. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  23. V. V. Val’kov, V. A. Mitskan, A. O. Zlotnikov, M. S. Shustin, and S. V. Aksenov, JETP Lett. 110, 140 (2019).

    Article  ADS  Google Scholar 

  24. A. Yu. Kitaev, Phys. Usp. 44, 131 (2001).

    Article  Google Scholar 

  25. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science (Washington, DC, U. S.) 336, 1003 (2012).

    Article  ADS  Google Scholar 

  26. H. Zhang, C.-X. Liu, S. Gazibegovic, et al., Nature (London, U.K.) 556, 74 (2018).

    Article  ADS  Google Scholar 

  27. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 96, 075161 (2017).

    Article  ADS  Google Scholar 

  28. V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, JETP Lett. 106, 798 (2017).

    Article  ADS  Google Scholar 

  29. V. V. Val’kov, M. Yu. Kagan, and S. V. Aksenov, J. Phys.: Condens. Matter 31, 225301 (2019).

    ADS  Google Scholar 

  30. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    Google Scholar 

  31. D. Rogovin and D. J. Scalapino, Ann. Phys. (N. Y.) 86, 1 (1974).

    Article  ADS  Google Scholar 

  32. S. V. Vonsovskii, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals: Their Alloys and Compounds (Nauka, Moscow, 1977; Springer, Berlin, New York, 1982).

    Google Scholar 

  33. P. I. Arseev, Phys. Usp. 58, 1159 (2015).

    Article  ADS  Google Scholar 

  34. P. I. Arseev, N. S. Maslova, and V. N. Mantsevich, J. Exp. Theor. Phys. 115, 141 (2012).

    Article  ADS  Google Scholar 

  35. M. P. Nowak, B. Szafran, and F. M. Peeters, Phys. Rev. B 84, 235319 (2011).

    Article  ADS  Google Scholar 

  36. A. Volya and V. Zelevinsky, Phys. Rev. C 67, 054322 (2003).

    Article  ADS  Google Scholar 

  37. A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. Rev. B 73, 235342 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to V.V. Valkov and A.D. Fedoseev for stimulating discussions.

Funding

The work was supported by the Presidium of the Russian Academy of Sciences (Program of Basic Research no. 32 “Nanostructures: Physics, Chemistry, Biology, and Fundamentals of Technologies”), by the Russian Foundation for Basic Research (project nos. 19-02-00348, 20-32-70059, and 20-02-00015), and by the Government of the Krasnoyarsk Territory together with the Krasnoyarsk Science Foundation (project no. 19-42-240011 “Coulomb Interactions in the Problem of Majorana Modes in Low-Dimensional Systems with Nontrivial Topology”). S.V. Aksenov acknowledges the support of the Council of the President of the Russian Federation for Support of Young Russian Scientists and Leading Scientific Schools, grant no. MK-3722.2018.2. M.Yu. Kagan acknowledges the support of the National Research University Higher School of Economics (program of basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Aksenov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 5, pp. 321–327.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, S.V., Kagan, M.Y. Collapse of the Fano Resonance Caused by the Nonlocality of the Majorana State. Jetp Lett. 111, 286–292 (2020). https://doi.org/10.1134/S0021364020050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020050057

Navigation