Skip to main content
Log in

A Decrease of the Respiratory Burst in Neutrophils after Exposure to Weak Combined Magnetic Fields of a Certain Duration

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—A significant decrease in the respiratory burst activity of a neutrophil suspension has been recorded in response to N-formyl–Met–Leu–Phe peptide activation after a 40-min exposure to weak combined magnetic fields: a static magnetic field (60 μT) and a collinear low-frequency magnetic field with a frequency of 49.5 Hz within the 60–180 nT range. This lower response was shown by luminol-dependent chemiluminescence. The frequency of 49.5 Hz of the alternating component of combined magnetic fields nominally corresponds to the Fe3+ ion cyclotron resonance frequency. At closely spaced frequencies (46 and 48.5 Hz), the biological effect of the combined magnetic fields was three times less pronounced. There was no biological effect at 33 Hz, the frequency of the alternating component of combined magnetic fields. The exposure to a magnetic signal that is the sum of all of the investigated frequencies (33.0, 46.0, 48.5 and 49.5 Hz) resulted in a effect that was two times less pronounced compared to that after the exposure to combined magnetic fields at 49.5 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 61 (3), 429 (2016).

    Article  Google Scholar 

  2. V. V. Novikov, E. V. Yablokova, G. V. Novikov, and E. E. Fesenko, Biophysics (Moscow) 62 (5), 759 (2017).

    Article  Google Scholar 

  3. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 62 (3), 440 (2017).

    Article  Google Scholar 

  4. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 63 (2), 193 (2018).

    Article  Google Scholar 

  5. V. V. Novikov, G. V. Novikov, and E. E. Fesenko, Bioelectromagnetics 30, 343 (2009).

    Article  Google Scholar 

  6. V. V. Novikov, V. O. Ponomarev, G. V. Novikov, et al., Biophysics (Moscow) 55 (4), 565 (2010).

    Article  Google Scholar 

  7. Yu. A. Vladimirov and E. V. Proskurina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  8. D. I. Roshchupkin, N. S. Belakina, and M. A. Murina, Biophysics (Moscow) 51, 79 (2006).

    Article  Google Scholar 

  9. V. N. Binhi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].

  10. G. Khokhlova, T. Abashina, N. Belova, et al., Bioelectromagnetics 39 (6), 485 (2018).

    Article  Google Scholar 

  11. V. V. Lednev, Bioelectromagnetics 12 (2), 71 (1991).

    Article  Google Scholar 

  12. N. A. Belova and V. A. Panchelyuga, Biophysics (Moscow) 55 (4), 661 (2010).

    Article  Google Scholar 

  13. V. V. Novikov and M. N. Zhadin, Biofizika 39 (1), 45 (1994).

    Google Scholar 

  14. V. V. Novikov, Biofizika 39 (5), 825 (1994).

    Google Scholar 

  15. M. N. Zhadin, V. V. Novikov, F. S. Barnes, and N. F. Pergola, Bioelectromagnetics 19, 41 (1998).

    Article  Google Scholar 

  16. E. D’Emilia, L. Giuliani, M. Ledda, et al., Electromagn. Biol. Med. 36 (1), 55 (2017).

    Google Scholar 

  17. A. Pazur, Electromagn. Biol. Med. 37 (2), 100 (2018).

    Article  Google Scholar 

  18. N. V. Bobkova, V. V. Novikov, N. I. Medvinskaya, et al., Electromagn. Biol. Med. 37 (3), 127 (2018).

    Article  Google Scholar 

  19. E. G. Novoselova, V. V. Novikov, S. M. Lunin, et al., Electromagn. Biol. Med. 38 (1), 74 (2019).

    Article  Google Scholar 

  20. V. N. Binhi, Bioelectromagnetics 21, 34 (2000).

    Article  Google Scholar 

  21. V. N. Binhi and F. S. Prato, Sci. Rep. 8, 13495 (2018).

    Article  ADS  Google Scholar 

  22. L. Makinistian, Sci. Rep. 9, 7478 (2019).

    Article  ADS  Google Scholar 

  23. V. V. Novikov and A. V. Karnaukhov, Bioelectromagnetics 18, 25 (1997).

    Article  Google Scholar 

  24. V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Biofizika 53 (2), 197 (2008).

    Google Scholar 

  25. A. V. Karnaukhov, Biofizika 42 (4), 971 (1997).

    Google Scholar 

  26. E. Del Giudice, M. Fleischmann, G. Preparata, et al., Bioelectromagnetics 23, 522 (2002).

    Article  Google Scholar 

  27. A. R. Liboff, C. Poggi, and P. Pratesi, Electromagn. Biol. Med. 36, 265 (2017).

    Article  Google Scholar 

  28. I. L. Golovanova, A. A. Philippov, Yu. V. Chebotareva, et al., J. Ichthyol. 55 (4), 590 (2015).

    Article  Google Scholar 

  29. A. V. Romanovskij, D. S. Pesnya, E. I. Izvekov, et al., Biophysics (Moscow) 59 (6), 935 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. V. Makeeva

Abbreviations: CMF, combined magnetic fields; SMF, static magnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Yablokova, E.V. & Fesenko, E.E. A Decrease of the Respiratory Burst in Neutrophils after Exposure to Weak Combined Magnetic Fields of a Certain Duration. BIOPHYSICS 65, 82–87 (2020). https://doi.org/10.1134/S0006350920010157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010157

Navigation