Skip to main content
Log in

The Effect of Visual Stimulation on GABA and Macromolecule Levels in the Human Brain in vivo

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain; it plays an important role in various types of synaptic plasticity and pathology. In the present work, proton magnetic resonance spectroscopy (1H-MRS) and two modified MEGA-PRESS pulse sequences, that is, –GABAMEGA-PRESS and +GABAMEGA-PRESS, were used to investigate the effect of visual stimulation on the GABA level in the human visual cortex in vivo. With –GABAMEGA-PRESS, it was possible to acquire the 1H-NMR signal of methylated protons of GABA with the chemical shift δ = 3.01 ppm without the signals from macromolecules. When +GABAMEGA-PRESS was used, the GABA signal was a superposition of resonances of methylene protons of GABA and macromolecules. The effect of constant visual stimulation on the level of N-acetylaspartate and total level of glutamate and glutamine was also estimated. Constant visual stimulation had no effect on the levels of N-acetylaspartate and glutamine in the visual cortex. The –GABA signal intensity decreased with a statistically significant decrease in the level of GABA signal intensity leading to inactivation of GABA synthesis. No statistically significant changes in the intensity of the +GABA resonance were found, probably due to the effect of visual stimulation on macromolecules. In order to test this hypothesis, a signal from macromolecules was acquired using a specifically designed inversion-recovery pulse sequence. It was shown that the intensity of this signal is unaffected by visual stimulation and the absence of changes in the intensity of the +GABA signal during the stimulation has to be considered as the masking effect of macromolecular signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. A. Lewis, D. W. Volk, and T. Hashimoto, Psychopharmacology 174 (1), 143 (2004).

    Article  Google Scholar 

  2. G. Sanacora, G. F. Mason, D. L. Rothman, et al., Arch. Gen. Psychiatry 56 (11), 1043 (1999).

    Article  Google Scholar 

  3. A. W. Goddard, G. F. Mason, A. Almai, et al., Arch. Gen. Psychiatry 58 (6), 556 (2001).

    Article  Google Scholar 

  4. O. A. Petroff and D. L. Rothman, Mol. Neurobiol. 16 (1), 97 (1998).

    Article  Google Scholar 

  5. L. K. Bak, A. Schousboe, and H. S. Waagepetersen, J. Neurochem. 98 (3), 641 (2006).

    Article  Google Scholar 

  6. A. Floyer-Lea, M. Wylezinska, T. Kincses, and P. M. Matthews, J. Neurochem. 95 (3), 1639 (2006).

    Google Scholar 

  7. R. A. E. Edden, S. D. Muthukumaraswamy, T. C. A. Freeman, and K. D. Singh, J. Neurosci. 29 (50), 15721 (2009).

    Article  Google Scholar 

  8. P. A. Bottomley, Ann. New York Acad. Sci. 508 (1), 333 (1987).

    Article  ADS  Google Scholar 

  9. J. Frahm, K. D. Merboldt, and W. Hanicke, J. Magn. Reson. 72 (3), 502 (1987).

    ADS  Google Scholar 

  10. P. K. Bhattacharyya, M. D. Phillips, L. A. Stone, and M. J. Lowe, Magn. Reson. Imaging 29 (3), 374 (2011).

    Article  Google Scholar 

  11. V. Govindaraju, K. Young, and A. A. Maudsley, NMR Biomed. 13 (3), 129 (2000).

    Article  Google Scholar 

  12. M. Mescher, H. Merkle, J. D. Kirsch, et al., NMR Biomed. 11 (6), 266 (1998).

    Article  Google Scholar 

  13. S. J. Kish, T. L. Perry, and S. Hansen, J. Neurochem. 32 (6), 1629 (1979).

    Article  Google Scholar 

  14. R. A. Edden, N. A. Puts, and P. B. Barker, Magn. Reson. Med. 68 (3), 657 (2012). https://doi.org/10.1002/mrm.24391

    Article  Google Scholar 

  15. D. C. Shungu, X. Mao, R. Gonzales, et al., NMR Biomed. 29 (7), 932 (2016).

    Article  Google Scholar 

  16. M. Považan, G. Hangel, B. Strasser, et al., Neuroimage 121, 126 (2015).

    Article  Google Scholar 

  17. L. Michels, E. Martin, P. Klaver, et al., PloS One 7 (4), e31933 (2012).

    Article  ADS  Google Scholar 

  18. R. J. Maddock, G. A. Casazza, D. H. Fernandez, and M. I. Maddock, J. Neurosci. 36 (8), 2449 (2016).

    Article  Google Scholar 

  19. R. Mekle, S. Kuhn, H. Pfeiffer, et al., NMR Biomed. 30 (2), e3672 (2017).

    Article  Google Scholar 

  20. C. Chen, H. P. Sigurdsson, S. Pepes, et al., NeuroImage 156, 207 (2017).

    Article  Google Scholar 

  21. P. Bednařik, I. Tkač, F. Giove, et al., J. Cereb. Blood Flow Metab. 35 (4), 601 (2015).

    Article  Google Scholar 

  22. K. Kurcyus, E. Annac, N. M. Hanning, et al., J. Neurosci. 38 (46), 9967 (2018).

    Article  Google Scholar 

  23. P. E. Menshchikov, N. A. Semenova, T. A. Akhadov, et al., Biophysics (Moscow) 62 (6), 1009 (2017).

    Article  Google Scholar 

  24. A. V. Manzhurtsev, N. A. Semenova, M. V. Ubminskii, et al., Izv. Ross. Akad. Nauk, Ser. Khim., No. 6, 1630 (2016).

  25. R. A. De Graaf, In Vivo NMR Spectroscopy: Principles and Techniques (Wiley, 2019).

    Book  Google Scholar 

  26. http://www.gabamrs.com.

  27. S. Cavassila, S. Deval, C. Huegen, et al., NMR Biomed. 14 (4), 278 (2001).

    Article  Google Scholar 

  28. https://www.stat.auckland.ac.nz/~wild/ChanceEnc/ Ch10.wilcoxon.pdf.

  29. S. Mangia, I. Tkac, R. Gruetter, et al., J. Cereb. Blood Flow Metab. 27 (5), 1055 (2007).

    Article  Google Scholar 

  30. B. Schaller, R. Mekle, L. Xin, et al., J. Neurosci. Res. 91 (8), 1076 (2013).

    Article  Google Scholar 

  31. A. Schousboe and U. Sonnewald, Glutamate/-GABAglutamine Cycle (Springer International, 2016).

    Book  Google Scholar 

  32. Y. Lin, M. C. Stephenson, L. Xin, et al., J. Cereb. Blood Flow Metab. 32 (8), 1484 (2012).

    Article  Google Scholar 

  33. R. C. G. Landim, R. A. Edden, B. Foerster, et al., Magn. Reson. Imaging 34 (3), 239 (2016).

    Article  Google Scholar 

  34. K. L. Behar and T. Ogino, Magn. Reson. Med. 30 (1), 38 (1993).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yakovlev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee of the Clinical and Research Institute of Emergency Pediatric Surgery and Traumatology (Moscow Healthcare Department) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Makeeva

Abbreviations: GABA, γ-aminobutyric acid; MRS, magnetic resonance spectroscopy; PS, pulse sequence; NAA, N-acetylaspartate; tCr, phosphocreatin; Glx, total glutamine and glutamate; FSP, frequency-selective pulse; SNR, signal/noise ratio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A., Manzhurtsev, A., Menshchikov, P. et al. The Effect of Visual Stimulation on GABA and Macromolecule Levels in the Human Brain in vivo. BIOPHYSICS 65, 51–57 (2020). https://doi.org/10.1134/S0006350920010248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010248

Navigation