Skip to main content
Log in

An Artificial Neural Network Model to Predict the Phenology of Early-Maturing Soybean Varieties from Climatic Factors

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Soybean phenology is strongly influenced by temperature and day length, and phenological records clearly reflect the changes in climatic conditions. A model including three artificial neural networks was designed to predict the time intervals between sowing, emergence, flowering, and maturity as dependent on climatic factors. Ensemble regression models were constructed to predict the yield, seed protein, and oil content in soybean. Data on maturation were analyzed for early-maturing soybean accessions phenotyped at two experimental stations of Vavilov Institute of Plant Genetic Resources in the North-Caucasian and Northwestern regions of Russia. The model was implemented in Python using the Keras and TensorFlow packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. G. Paptsov, S. A. Shilovskaya, A. V. Kolesnikov, et al., Adaptation of Russian Agriculture to Global Climate Change (Oxfam International, 2015). http:// www.oxfam.ru/upload/iblock/f96/f9622b41f4854994-5438f2292f509d14.pdf. Cited January 6, 2019.

  2. J. E. Olesen, T.R. Carter, C.H. Diaz-Ambrona, et al., Eur. J. Agron. 34 (2), 96 (2011).

    Article  Google Scholar 

  3. T. Carter and K. Makinen, Approaches to Climate Change Impact, Adaptation and Vulnerability Assessment: Towards a Classification Framework to Serve Decision-Making: MEDIATION 2.1 (Finnish Environment Institute, Helsinki, Finland, 2011).

    Google Scholar 

  4. A. D. Richardson, R. S. Anderson, M. Altaf Arain, et al., Global Change Biol. 18 (2) 566 (2012).

    Article  ADS  Google Scholar 

  5. K. N. Kozlov, L. Yu. Novikova, I. V. Seferova, and M. G. Samsonova, Biophysics (Moscow) 63 (1), 136 (2018).

    Article  Google Scholar 

  6. D. J. Major, et al., Crop Sci. 15, 174 (1975).

    Article  Google Scholar 

  7. T. Hodges and V. French, Agronomy J. 77 (3), 500 (1985).

    Article  Google Scholar 

  8. P. Pedersen, et al., Agronomy J. 96, 556 (2004).

    Article  Google Scholar 

  9. T. D. Setiyono, et al., Field Crops Res. 100 (2–3), 257 (2007).

  10. L. Yu. Novikova, I. V. Seferova, and K. N. Kozlov, Biophysics (Moscow) 63 (6) 956 (2018).

    Article  Google Scholar 

  11. M. Abdipour, et al., J. Am. Oil Chemists’ Soc. 95 (3), 283 (2018).

    Google Scholar 

  12. M. Kaul, R. L. Hill, and C. Walthall, Agricult. Syst. 85 (1), 1 (2005).

    Article  Google Scholar 

  13. A. Bagherzadeh, et al., Model. Earth Syst. Environ. 2 (2), (2016).

  14. D. A. Elizondo, R. W. McClendon, and G. Hoogenboom, Trans. ASAE 37 (3), 981 (1994).

    Article  Google Scholar 

  15. N. I. Korsakov, O. P. Adamova, V. I. Budalova, et al., Methodological Guidelines for Studies on Collections of Legume Grain Crops (N. I. Vavilov Research Institute of Plant Industry, Leningrad, 1990) [in Russian].

    Google Scholar 

  16. L. Shelchko, et al., CMEA International Classification of the Genus Glycine Willd. (CMEA Scientific Council on Collections of Wild and Cultivated Plant Species, N. I. Vavilov Research Institute of Plant Industry, Leningrad, 1990) [in Russian].

  17. O. D. Taratuhin, L. Yu. Novikova, I. V. Seferova, and K. N. Kozlov, Biophysics (Moscow) 64 (3) 440 (2019).

    Article  Google Scholar 

  18. M. Feurer, A. Klein, K. Eggensperger, et al. in Advances in Neural Information Processing Systems, Ed. by C. Cortes (Curran Assoc., 2015), pp. 2962–2970.

    Google Scholar 

  19. M. Srinivasa Rao, P. Swathi, C.A. Rama Rao, et al., PLoS One 10 (2), e0116762 (2015).

    Article  Google Scholar 

  20. P. G. Jones and P. K. Thornton, Agricult. Forest Meteorol. 86 (1–2), 127 (1997).

  21. P. G. Jones and P. K. Thornton, Agricult. Forest Meteorol. 97 (3), 213 (1999).

    Article  ADS  Google Scholar 

  22. P. G. Jones and P. K. Thornton, Agron. J. 92, 445 (2000).

    Article  Google Scholar 

  23. P. G. Jones and A. L. Jones, MarkSim: A Computer Tool That Generates Simulated Weather Data for Crop Modeling and Risk Assessment (CIAT, 2002).

    Google Scholar 

  24. D. P. van Vuuren, et al., Clim. Change 109 (1–2), 5 (2011).

  25. F. Pedregosa, et al., J. Machine Learning Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  26. F. Chollet, et al., Keras (GitHub, 2015). https://https://github.com/keras-team/keras.

  27. M. Abadi, et al., in Proc. 12th USENIX Conf. on Operating Systems Design and Implementation (Savannah, GA, USA, 2016), pp. 265–283.

  28. K. Kozlov, A. M. Samsonov, and M. Samsonova, Peer J. Comp. Sci. 2, e74 (2016).

    Article  Google Scholar 

  29. R. Storn and K. Price, J. Global Optim. 11, 341 (1997).

    Article  MathSciNet  Google Scholar 

  30. M. O’Neill and C. Ryan, IEEE Trans. Evol. Comput. 5 (4), 349 (2001).

    Article  Google Scholar 

  31. L. Yu. Novikova, I. V. Seferova, A. Yu. Nekrasov, et al., Vavilov. Zh. Genet. Selekts. 22 (6) 708 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Computations were performed at the Polytechnic Supercomputer Center of St. Petersburg State University and a cluster of University of Southern California.

Initial data were obtained on the basis of the unique research tool Collection of Plant Genetic Resources (Vavilov Institute of Plant Genetic Resources).

Funding

This work was supported by the Federal Grant Program (project no. 14.575.21.0136 dated September 26, 2017, unique project identifier RFMEFI57517X0136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Kozlov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taratuhin, O.D., Novikova, L.Y., Seferova, I.V. et al. An Artificial Neural Network Model to Predict the Phenology of Early-Maturing Soybean Varieties from Climatic Factors. BIOPHYSICS 65, 106–117 (2020). https://doi.org/10.1134/S0006350920010200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920010200

Navigation