Skip to main content
Log in

Pressure and Porosity Profiles During Filtration–Expression Process

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents a numerical model for pressure deliquoring of compressible solids, covering both filtration and expression. A simple and easy-to-solve model for the solid/liquid system is obtained by formulating the basic flux and continuity equations for both solid and liquid phases, the momentum balance for the liquid phase (Darcy’s law) and the momentum for the solid phase (Hooke’s law). Kaolin suspension is used as a product model having elastic behaviour. A computer model was developed to simulate cake formation and cake characteristics during filtration at an individual particle level. The model was shown to be able to generate structural information and quantify the cake thickness, cake solidosity, filtrate volume, filtrate flow rate for constant pressure filtration or pressure drop across the filter unit for constant rate filtration as a function of filtration time. The numerical model of the filtration–expression process seems promising to further improvement of the understanding and control of dewatering of solid/liquid suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ruth, B.F., Studies in filtration IV: Nature of fluid flow through filter septa and its importance in the filtration equation, Ind. Eng. Chem., 1935, vol. 27, no. 7, p. 806.

    Article  CAS  Google Scholar 

  2. Ruth, B.F., Studies in filtration III: Derivation of general filtration equations, Ind. Eng. Chem., 1935, vol. 27, no. 6, p. 708.

    Article  CAS  Google Scholar 

  3. Ruth, B.F., Correlating filtration theory with industrial practice, Ind. Eng. Chem., 1946, vol. 38, no. 6, p. 564.

    Article  CAS  Google Scholar 

  4. Ruth, B.F., Montillon, G.H., and Montanna, R.E., Studies in filtration, Ind. Eng. Chem., 1933, vol. 25, no. 2, p. 153.

    Article  CAS  Google Scholar 

  5. Ruth, B.F., Montillon, G.H., and Montanna, R.E., Studies in filtration – I. Critical analysis of filtration theory, Ind. Eng. Chem., 1933, vol. 25, no. 1, p. 76.

    Article  CAS  Google Scholar 

  6. Ruth, B.F., Montanna, R.E., and Montillon, G.H., Comments upon recent developments in theory of filtration, Ind. Eng. Chem., 1931, vol. 23, no. 7, p. 850.

    Article  CAS  Google Scholar 

  7. Lloyd, P.J. and Ward, A.S., Filtration applications of particle characterization, AIChE J., 1977, vol. 171, pp. 6–12.

    Google Scholar 

  8. Leu, W. and Tiller, F.M., Experimental study of the mechanism of constant pressure cake filtration: Clogging of filter media, Sep. Sci. Technol., 1983, vol. 18, nos. 12–13, p. 1351.

    Article  CAS  Google Scholar 

  9. Hosten, C. and San, O., Role of the clogging phenomena in erroneous implications of conventional data analysis for constant pressure cake filtration, Sep. Sci. Technol., 1999, vol. 34, no. 9, p. 1759.

    Article  CAS  Google Scholar 

  10. Lee, D.J. and Wang, C.H., Theories of cake filtration and consolidation and implications to sludge dewatering, Water Res., 2000, vol. 34, no. 1, p. 1.

    Article  Google Scholar 

  11. Tiller, F.M. and Crump, J.R., Solid-liquid separation: An overview, Chem. Eng. Prog., 1977, vol. 73, no. 10, p. 65.

    CAS  Google Scholar 

  12. Tiller, F.M. and Horng, L.L., Hydraulic deliquoring of compressible filter cakes. Part 1: Reverse flow in filter presses, AIChE J., 1983, vol. 29, no. 2, p. 297.

    Article  CAS  Google Scholar 

  13. Tiller, F.M. and Leu, W.F., Basic data fitting in filtration, J. Chin. Inst. Chem. Eng., 1980, vol. 11, p. 61.

    CAS  Google Scholar 

  14. Tiller, F.M., Lu, R., Kwon, J.H., et al., Variable flow rate in compactible filter cakes, Water Res., 1999, vol. 33, no. 1, p. 15.

    Article  CAS  Google Scholar 

  15. Lee, D.J., Ju, S.P., Kwon, J.H., et al., Filtration of highly compactible filter cake: Variable internal flow rate, AIChE J., 2000, vol. 46, no. 1, p. 110.

    Article  CAS  Google Scholar 

  16. Willis, M.S., Shen, M., and Gray, K.J., Investigation of the fundamental assumptions relating compression-permeability data with filtration, Can. J. Chem. Eng., 1974, vol. 52, no. 3, p. 331.

    Article  CAS  Google Scholar 

  17. Willis, M.S., Collins, R.M., and Bridges, W.G., Complete analysis of non-parabolic filtration behavior, Chem. Eng. Res. Des., 1983, vol. 61, no. 2, p. 96.

    CAS  Google Scholar 

  18. Willis, M.S., Tosun, I., and Collins, R.M., Filtration mechanisms, Chem. Eng. Res. Des., 1985, vol. 63, no. 3, p. 175.

    CAS  Google Scholar 

  19. Willis, M.S. and Tosun, I., A rigorous cake filtration theory, Chem. Eng. Sci., 1980, vol. 35, no. 12, p. 2427.

    Article  CAS  Google Scholar 

  20. Tosun, I., On the validity of the “power law” approximation in filtration theory, Chem. Eng. Sci., 1982, vol. 37, no. 9, p. 1421.

    Article  CAS  Google Scholar 

  21. Tosun, I. and Willis, M.S., Drag stress-pressure drop relationship in filtration, Chem. Eng. Sci., 1983, vol. 38, no. 3, p. 485.

    Article  CAS  Google Scholar 

  22. Tosun, I., Mathematical formulation of cake filtration for deformable solid particles, Chem. Eng. Sci., 1985, vol. 40, no. 4, p. 673.

    Article  CAS  Google Scholar 

  23. Tosun, I. and Willis, M.S., Cake filtration theory: An overview, Proc. 4th World Filtration Congress, Ostend, Belgium, 1986, pp. 4.13–4.20.

  24. Tosun, I. and Willis, M.S., Making the case for the multiphase filtration theory, Filtr. Sep., 1989, vol. 26, no. 4, p. 295.

    CAS  Google Scholar 

  25. Tosun, I., Willis, M.S., Desai, F., et al., Analysis of drag and particulate stress in porous media flows, Chem. Eng. Sci., 1995, vol. 50, no. 12, p. 1961.

    Article  CAS  Google Scholar 

  26. Chase, G.G. and Willis, M.S., Orthogonal curvilinear cake filtration, Sep. Sci. Technol., 1991, vol. 26, no. 5, p. 689.

    Article  CAS  Google Scholar 

  27. Tiller, F.M. and Cooper, H., The role of porosity in filtration: Part V. Porosity variation in filter cakes, AIChE J., 1962, vol. 8, no. 4, p. 445.

    Article  CAS  Google Scholar 

  28. Tiller, F.M. and Cooper, H.R., The role of porosity in filtration: IV. Constant pressure filtration, AIChE J., 1960, vol. 6, no. 4, p. 595.

    Article  CAS  Google Scholar 

  29. Tiller, F.M. and Shirato, M., The role of porosity in filtration: VI. New definition of filtration resistance, AIChE J., 1964, vol. 10, no. 1, p. 61.

    Article  CAS  Google Scholar 

  30. Cleveland, T.G., Tiller, F.M., and Lee, J.B., Theory of filtration of highly compactable biosolids, Water Sci. Technol., 1996, vol. 34, nos. 3–4, p. 299.

    Article  Google Scholar 

  31. Tiller, F.M. and Lu, W.M., The role of porosity in filtration VIII: Cake nonuniformity in compression–permeability cells, AIChE J., 1972, vol. 18, no. 3, p. 569.

    Article  CAS  Google Scholar 

  32. Tiller, F.M., Haynes, S., Jr., and Lu, W.M., The role of porosity in filtration VII: Effect of side-wall friction in compression-permeability cells, AIChE J., 1972, vol. 18, no. 1, p. 13.

    Article  CAS  Google Scholar 

  33. Tiller, F.M. and Yeh, C.S., The role of porosity in filtration. Part XI: Filtration followed by expression, AIChE J., 1987, vol. 33, no. 8, p. 1241.

    Article  CAS  Google Scholar 

  34. Tiller, F.M. and Yeh, C.S., The role of porosity in filtration. Part X: Deposition of compressible cakes on external radial surfaces, AIChE J., 1985, vol. 31, no. 8, p. 1241.

    Article  CAS  Google Scholar 

  35. Wakeman R.J., Thickening and filtration: A review and evaluation of recent research, Trans. Inst. Chem. Eng., 1981, vol. 59, no. 3, p. 147.

    CAS  Google Scholar 

  36. Stamatakis, K. and Tien, C., A simple model of cross-flow filtration based on particle adhesion, AIChE J., 1993, vol. 39, no. 8, p. 1292.

    Article  CAS  Google Scholar 

  37. Tien, C., Introduction to Cake Filtration, Amsterdam: Elsevier, 2006.

    Google Scholar 

  38. Terzaghi, K. and Peck, R.B., Soils Mechanics in Engineering Practice, New York: Wiley, 1948.

    Google Scholar 

  39. La Heij, E.J., Kerkhof, P.J.A.M., Herwijn, A.J.M., et al., Fundamental aspects of sludge filtration and expression, Water Res., 1996, vol. 30, no. 3, p. 697.

    Article  CAS  Google Scholar 

  40. La Heij, E.J., Kerkhof, P.J.A.M., Kopinga, K., et al., Determining porosity profiles during filtration and expression of sewage sludge by NMR imaging, AIChE J., 1996, vol. 42, no. 4, p. 953.

    Article  CAS  Google Scholar 

  41. Shirato, M., Murase, T., Iritani, E., et al., Analysis of consolidation process in filter cake dewatering by use of difficult-to-filter slurries, J. Chem. Eng. Jpn., 1986, vol. 19, no. 6, p. 587.

    Article  CAS  Google Scholar 

  42. Shirato, M., Murase, T., Iwata, M., et al., Deliquoring by expression—Part 1 Constant-pressure expression, Drying Technol., 1986, vol. 4, no. 3, p. 363.

    Article  Google Scholar 

  43. Shirato, M., Murase, T., Iwata, M., et al., The Terzaghi–Voigt combined model for constant-pressure consolidation of filter cakes and homogeneous semi-solid materials, Chem. Eng. Sci., 1986, vol. 41, no. 12, p. 3213.

    Article  CAS  Google Scholar 

  44. Očenášek, J. and Voldřich, J., Mathematical modeling of a biogenous filter cake and identification of oilseed material parameters, Appl. Comput. Mech., 2009, vol. 3, no. 2, pp. 339–350.

    Google Scholar 

  45. Tien, C., Principles of Filtration, Amsterdam: Elsevier, 2012.

    Google Scholar 

  46. Mihoubi, D. and Bellagi, A., Modeling of heat and moisture transfers with stress-strain formation during convective air drying of deformable media, Heat Mass Transfer, 2012, vol. 48, no. 10, p. 1697.

    Article  CAS  Google Scholar 

  47. Christensen, M.L., Johansson, C., Sedin, M., et al., Nonlinear filtration behavior of soft particles: Effect of dynamic cake compression, Powder Technol., 2011, vol. 207, nos. 1–3, p. 428.

    Article  CAS  Google Scholar 

  48. Tien, C. and Ramarao, B.V., Modeling the performance of cross-flow filtration based on particle adhesion, Chem. Eng. Res. Des., 2017, vol. 117, p. 336.

    Article  CAS  Google Scholar 

  49. Tien, C. and Ramarao, B.V., Can filter cake porosity be estimated based on the Kozeny-Carman equation?, Powder Technol., 2013, vol. 237, p. 233.

    Article  CAS  Google Scholar 

  50. Couturier, S., Valat, M., Vaxelaire, J., et al., Enhanced expression of filter cakes using a local thermal supply, Sep. Purif. Technol., 2007, vol. 57, no. 2, p. 321.

    Article  CAS  Google Scholar 

  51. Teoh, S.K., Tan, R.B.H., and Tien, C., Analysis of cake filtration data – A critical assessment of conventional filtration theory, AIChE J., 2006, vol. 52, no. 10, p. 3427.

    Article  CAS  Google Scholar 

  52. Vorobiev, E., Derivation of filtration equations incorporating the effect of pressure redistribution on the cake–medium interface: A constant pressure filtration, Chem. Eng. Sci., 2006, vol. 61, no. 11, p. 3686.

    Article  CAS  Google Scholar 

  53. Bai, R. and Tien, C., Further work on cake filtration analysis, Chem. Eng. Sci., 2005, vol. 60, no. 2, p. 301.

    Article  CAS  Google Scholar 

  54. Mihoubi, D., Vaxelaire, J., Zagrouba, F., et al., Mechanical dewatering of suspension, Desalination, 2003, vol. 158, nos. 1–3, p. 259.

    Article  CAS  Google Scholar 

  55. Mihoubi, D., Mechanical and thermal dewatering of residual sludge, Desalination, 2004, vol. 167, nos. 1–3, p. 135.

    Article  CAS  Google Scholar 

  56. Tiller, F.M. and Green, T.C., Role of porosity in filtration IX Skin effect with highly compressible materials, AIChE J., 1973, vol. 19, no. 6, p. 1266.

    Article  CAS  Google Scholar 

  57. La Heij, E.J., An Analysis of Sludge Filtration and Expression, Eindhoven: Technische Universiteit, 1994.

    Google Scholar 

  58. Couturier, S., Valat, M., Vaxelaire, J., et al., Liquid pressure measurement in filtration-compression cell, Sep. Sci. Technol., 2003, vol. 38, no. 5, p. 1051.

    Article  CAS  Google Scholar 

  59. Wetterling, J., Mattsson, T., and Theliander, H., Modelling filtration processes from local filtration properties: The effect of surface properties on microcrystalline cellulose, Chem. Eng. Sci., 2017, vol. 165, p. 14.

    Article  CAS  Google Scholar 

  60. Abboud, N.M., Numerical solution and sensitivity analysis of pore liquid pressure and cake porosity to model parameters, Transp. Porous Media, 1998, vol. 30, no. 2, p. 199.

    Article  Google Scholar 

  61. Sørensen, P.B., Moldrup, P., and Hansen, J., Filtration and expression of compressible cakes, Chem. Eng. Sci., 1996, vol. 51, no. 6, p. 967.

    Article  Google Scholar 

  62. Tien, C. and Bai, R., An assessment of the conventional cake filtration theory, Chem. Eng. Sci., 2003, vol. 58, no. 7, p. 1323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mihoubi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahwachi, M., Mihoubi, D. Pressure and Porosity Profiles During Filtration–Expression Process. Theor Found Chem Eng 54, 370–379 (2020). https://doi.org/10.1134/S0040579520020098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520020098

Keywords:

Navigation