Skip to main content
Log in

Intrinsic Hydrodynamic Investigation of Three-Phase Bubble Column: Comparative Experimental Study on Gas Holdup

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A comprehensive experimental study of the hydrodynamic behaviors for the specific system of air/paraffin oil/silica particles in a slurry bubble column of 0.15 m diameter and 2.9 m length has been carried out. The effect of regime transition, solid concentrations, static liquid height, sparger type and related bubble size on gas holdup over a range of superficial gas velocities has been investigated. From the experimental work, it is revealed that the gas holdup increases by increasing the superficial gas velocity and transition regime occurred at 0.043 to 0.08 m/s. The slope of this curve is steeper for homogeneous regime and less for heterogeneous regime. In addition, the presence of silica particle (0–40 vol %) inhibits bubble breakage, increases rise velocity and consequently decreases residence time and gas holdup. Approximately a 40% decrease in the overall gas holdup was observed by adding 40% solid particles to the air/paraffin oil system. Moreover, increasing static liquid height from 6 to 12 leads to about a 61% decrease in gas holdup in the absence of solid particles. Also, the use of a perforated plate instead of a porous one causes a 9% increase and a 21% decrease in bubble size and gas holdup, respectively. Finally, it is found that the Krishna and Sie correlation can predict gas holdup in the air/paraffin oil/silica particles system with an acceptable minimum relative error of about 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kostanyan, A.E., Multistage bubble suspended-bed column reactor for hydrocarbon oxidation processes, Theor. Found. Chem. Eng., 2013, vol. 47, no. 5, pp. 660–662. https://doi.org/10.1134/S0040579513050047

    Article  CAS  Google Scholar 

  2. Pour, A.N., Housaindokht, M.R., Irani, M. and Shahri, S.M.K., Size-dependent studies of Fischer–Tropsch synthesis on iron based catalyst: New kinetic model, Fuel, 2014, vol. 116, pp. 787–793.

    Article  Google Scholar 

  3. Pour, A.N. and Housaindokht, M.R., Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: Effect of catalyst shaping, J. Nat. Gas Sci. Eng., 2013, vol. 14, pp. 29–33.

    Article  Google Scholar 

  4. Schumpe, A., Saxena, A., and Fang, L., Gas/liquid mass transfer in a slurry bubble column, Chem. Eng. Sci., 1987, vol. 42, no. 7, pp. 1787–1796.

    Article  CAS  Google Scholar 

  5. Shaikh, A. and Al-Dahhan, M.H., A review on flow regime transition in bubble columns, Int. J. Chem. React. Eng., 2007, vol. 5, no. 1. https://doi.org/10.2202/1542-6580.1368

  6. Rozen, A.M. and Kostanyan, A.E., Scaling-up effect in chemical engineering, Theor. Found. Chem. Eng., 2002, vol. 36, no. 4, pp. 307–313. https://doi.org/10.1023/A:1019877029219

    Article  CAS  Google Scholar 

  7. Götz, M., Lefebvre, J., Mörs, F., Reimert, R., Graf, F., and Kolb, T., Hydrodynamics of organic and ionic liquids in a slurry bubble column reactor operated at elevated temperatures, Chem. Eng. J., 2016, vol. 286, pp. 348–360.

    Article  Google Scholar 

  8. Panchenko, S.V., Panchenko, D.S., and Glebova, N.B., Hydrodynamics of the bubble bed of a heterogeneous reduction reactor, Theor. Found. Chem. Eng., 2005, vol. 39, no. 1, pp. 53–56. https://doi.org/10.1007/PL00022160

    Article  CAS  Google Scholar 

  9. Behkish, A., Men, Z., Inga, J.R., and Morsi, B.I., Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures, Chem. Eng. Sci., 2002, vol. 57, no. 16, pp. 3307–3324.

    Article  CAS  Google Scholar 

  10. Li, Z., Guan, X., Wang, L., Cheng, Y., and Li, X., Experimental and numerical investigations of scale-up effects on the hydrodynamics of slurry bubble columns, Chin. J. Chem. Eng., 2016, vol. 24, no. 8, pp. 963–971. https://doi.org/10.1016/j.cjche.2016.05.009

    Article  CAS  Google Scholar 

  11. Lau, R., Mo, R., and Sim, W.S.B., Bubble characteristics in shallow bubble column reactors, Chem. Eng. Res. Des., 2010, vol. 88, no. 2, pp. 197–203.

    Article  CAS  Google Scholar 

  12. Krishna, R., De Swart, J.W., Ellenberger, J., Martina, G.B., and Maretto, C., Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations, AIChE J., 1997, vol. 43, no. 2, pp. 311–316.

    Article  CAS  Google Scholar 

  13. Vandu, C., Koop, K., and Krishna, R., Volumetric mass transfer coefficient in a slurry bubble column operating in the heterogeneous flow regime, Chem. Eng. Sci., 2004, vol. 59, no. 22, pp. 5417–5423.

    Article  CAS  Google Scholar 

  14. Vandu, C. and Krishna, R., Volumetric mass transfer coefficients in slurry bubble columns operating in the churn-turbulent flow regime, Chem. Eng. Process., 2004, vol. 43, no. 8, pp. 987–995.

    Article  CAS  Google Scholar 

  15. Woo, K.-J., Kang, S.-H., Kim, S.-M., Bae, J.-W., and Jun, K.-W., Performance of a slurry bubble column reactor for Fischer–Tropsch synthesis: Determination of optimum condition, Fuel Process. Technol., 2010, vol. 91, no. 4, pp. 434–439.

    Article  CAS  Google Scholar 

  16. Behkish, A., Lemoine, R., Sehabiague, L., Oukaci, R., and Morsi, B.I., Prediction of the gas holdup in industrial-scale bubble columns and slurry bubble column reactors using back-propagation neural networks, Int. J. Chem. React. Eng., 2005, vol. 3, no. 1.

  17. Sehabiague, L. and Morsi, B.I., Hydrodynamic and mass transfer characteristics in a large-scale slurry bubble column reactor for gas mixtures in actual Fischer–Tropsch cuts, Int. J. Chem. React. Eng., 2013, vol. 11, no. 1, pp. 83–102.18. Abdulrahman, M., Experimental studies of the transition velocity in a slurry bubble column at high gas temperature of a helium–water–alumina system, Exp. Therm. Fluid Sci., 2016, vol. 74, pp. 404–410.

    Article  Google Scholar 

  18. Gheni, S.A., Abdulaziz, Y.I., and Al-Dahhan, M.H., Effect of L/D ratio on phase holdup and bubble dynamics in slurry bubble column using optical fiber probe measurements, Int. J. Chem. React. Eng., 2016, vol. 14, no. 2, pp. 653–664.

    Article  CAS  Google Scholar 

  19. Jana, S.K., Biswas, A.B., and Das, S.K., Gas holdup in tapered bubble column using pseudoplastic non-Newtonian liquids, Korean J. Chem. Eng., 2014, vol. 31, no. 4, pp. 574–581.

    Article  CAS  Google Scholar 

  20. Mersmann, A., Design and scale-up of bubble and spray columns, Ger. Chem. Eng., 1978, vol. 1, no. 1, pp. 1–11.

    Google Scholar 

  21. Basha, O.M., Sehabiague, L., Abdel-Wahab, A., and Morsi, B.I., Fischer–Tropsch synthesis in slurry bubble column reactors: Experimental investigations and modeling–A review, Int. J. Chem. React. Eng., 2015, vol. 13, no. 3, pp. 201–288.

    Article  CAS  Google Scholar 

  22. Rabha, S., Schubert, M., and Hampel, U., Intrinsic flow behavior in a slurry bubble column: A study on the effect of particle size, Chem. Eng. Sci., 2013, vol. 93, pp. 401–411.

    Article  CAS  Google Scholar 

  23. Krishna, R. and Sie, S., Design and scale-up of the Fischer–Tropsch bubble column slurry reactor, Fuel Process. Technol., 2000, vol. 64, no. 1, pp. 73–105.

    Article  CAS  Google Scholar 

  24. Abdulrahman, M., Experimental studies of gas holdup in a slurry bubble column at high gas temperature of a helium− water− alumina system, Chem. Eng. Res. Des., 2016, vol. 109, pp. 486–494.

    Article  CAS  Google Scholar 

  25. Kaštánek, A., Zelenka, J., and Hájek, K., The viscosity of an unsaturated polyester, J. App. Polym. Sci., 1984, vol. 29, no. 2, pp. 447–453.

    Article  Google Scholar 

  26. Kumar, S.B., Moslemian, D., and Duduković, M.P., Gas-holdup measurements in bubble columns using computed tomography, AIChE J., 1997, vol. 43, no. 6, pp. 1414–1425.

    Article  CAS  Google Scholar 

  27. Ruzicka, M., Drahoš, J., Fialova, M., and Thomas, N., Effect of bubble column dimensions on flow regime transition, Chem. Eng. Sci., 2001, vol. 56, no. 21, pp. 6117–6124.

    Article  CAS  Google Scholar 

  28. Wilkinson, P.M., Spek, A.P., and van Dierendonck, L.L., Design parameters estimation for scale-up of high-pressure bubble columns, AIChE J., 1992, vol. 38, no. 4, pp. 544–554.

    Article  CAS  Google Scholar 

  29. Yamashita, F., Effect of clear liquid height and gas inlet height on gas holdup in a bubble column, J. Chem. Eng. Jpn., 1998, vol. 31, no. 2, pp. 285–288.

    Article  CAS  Google Scholar 

  30. Jordan, U. and Schumpe, A., The gas density effect on mass transfer in bubble columns with organic liquids, Chem. Eng. Sci., 2001, vol. 56, no. 21, pp. 6267–6272.

    Article  CAS  Google Scholar 

  31. Bouaifi, M., Hebrard, G., Bastoul, D., and Roustan, M., A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns, Chem. Eng. Process., 2001, vol. 40, no. 2, pp. 97–111.

    Article  CAS  Google Scholar 

  32. Bouaifi, M. and Roustan, M., Bubble size and mass transfer coefficients in dual-impeller agitated reactors, Can. J. Chem. Eng., 1998, vol. 76, no. 3, pp. 390–397.

    Article  CAS  Google Scholar 

  33. Luo, X., Lee, D., Lau, R., Yang, G., and Fan, L.S., Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns, AIChE J., 1999, vol. 45, no. 4, pp. 665–680.

    Article  CAS  Google Scholar 

  34. Sauer, T. and Hempel, D.C., Fluid dynamics and mass transfer in a bubble column with suspended particles, Chem. Eng. Technol., 1987, vol. 10, no. 1, pp. 180–189.

    Article  CAS  Google Scholar 

  35. Fan, L.-S., Yang, G., Lee, D., Tsuchiya, K., and Luo, X., Some aspects of high-pressure phenomena of bubbles in liquids and liquid–solid suspensions, Chem. Eng. Sci., 1999, vol. 54, no. 21, pp. 4681–4709.

    Article  CAS  Google Scholar 

  36. Koide, K., Takazawa, A., Komura, M., and Matsunaga, H., Gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble columns, J. Chem. Eng. Jpn., 1984, vol. 17, no. 5, pp. 459–466.

    Article  CAS  Google Scholar 

  37. Reilly, I., Scott, D., De Bruijn, T., Jain, A., and Piskorz, J., A correlation for gas holdup in turbulent coalescing bubble columns, Can. J. Chem. Eng., 1986, vol. 64, no. 5, pp. 705–717.

    Article  CAS  Google Scholar 

  38. Prakash, A., Margaritis, A., Li, H., and Bergougnou, M.A., Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast, Biochem. Eng. J., 2001, vol. 9, no. 2, pp. 155–163.

    Article  CAS  Google Scholar 

  39. Li, H. and Prakash, A., Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column, Powder Technol., 2000, vol. 113, nos. 1–2, pp. 158–167.

    Article  CAS  Google Scholar 

  40. Hyndman, C.L., Larachi, F., and Guy, C., Understanding gas-phase hydrodynamics in bubble columns: A convective model based on kinetic theory, Chem. Eng. Sci., 1997, vol. 52, no. 1, pp. 63–77.

    Article  CAS  Google Scholar 

  41. Mena, P.C., Ruzicka, M.C., Rocha, F.A., Teixeira, J.A., and Drahoš, J., Effect of solids on homogeneous–heterogeneous flow regime transition in bubble columns, Chem. Eng. Sci., 2005, vol. 60, no. 22, pp. 6013–6026. https://doi.org/10.1016/j.ces.2005.04.020

    Article  CAS  Google Scholar 

  42. Pino, L.Z., Solari, R.B., Siuier, S., Estevez, L.A., Yepez, M.M., and Saez, A.E., Effect of operating conditions on gas holdup in slurry bubble columns with a foaming liquid, Chem. Eng. Commun., 1992, vol. 117, no. 1, pp. 367–382.

    Article  CAS  Google Scholar 

Download references

Funding

FUNDING

The authors wish to acknowledge the financial support granted by Ferdowsi University of Mashhad.

NOTATION

Symbols and Abbrevia-tions

 

Greeks

 

C s

solid concentration in slurry phase

σ

surface tension, N m–1

Cso

solid concentration at the bottom of the reactor

εg

gas holdup

D

diameter of reactor, m

\(\rho \)

density, kg m–3

d

bubble diameter, m

\(\mu \)

viscosity, kg m–1s–1

d 32

Sauter diameter, m

\(\upsilon \)

kinematic viscosity, m2s–1

d b

large bubble diameter, m

\(\zeta \)

dimensionless radial position

g

gravity acceleration, m s–1

Subscripts

 

H C

height of reactor, m

b

bubble

L

length of reactor, m

C

column

Mo

Morton number, dimensionless

cal

calculated

U G

superficial gas velocity, m s–1

df

dense phase

UUdf

superficial gas velocity through the large bubbles, m s–1

expt

experimental

U trans

transition superficial gas velocity, m s–1

eff

effective

\({{\upsilon }_{{{\text{eff}}{\text{,rad}}}}}\)

radial momentum transfer coefficient, m2 s–1

G, L

gas and liquid phases

SBCR

slurry bubble column reactor

large

referring to large bubbles

RE

relative error

P

particle

ARE

absolute relative error

small

referring to small bubbles

Nlit/min

normal liter per minute

sl

slurry

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Garmroodi Asil or A. Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A. Garmroodi Asil, Pour, A.N. & Mirzaei, S. Intrinsic Hydrodynamic Investigation of Three-Phase Bubble Column: Comparative Experimental Study on Gas Holdup. Theor Found Chem Eng 54, 331–341 (2020). https://doi.org/10.1134/S0040579520020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520020050

Keywords:

Navigation