Skip to main content
Log in

CFD Analysis of Cryogenic Pulsating Heat Pipe with Near Critical Diameter under Varying Gravity Conditions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Numerical simulation of 2D Cryogenic Pulsating Heat Pipe (CPHP) is carried out with near critical diameter. Liquid nitrogen is used as working fluid for targeting cryogenic applications in the range from 77 to 123 K. The volume of fluid (VOF) model is considered for two phase simulations. The evaporator and condenser section are kept at constant wall temperature condition while adiabatic section is considered insulated. The evaporator temperature varied from 85 to 110 K and condenser section kept at 75 K. The filling ratio (FR) of working fluid is varied as 50, 60 and 70%. CPHP model is first tested with on ground gravity condition of 9.81 m/s2. It is then tested with low gravity conditions (0.981 m/s2) and milli-gravity condition (0.01 m/s2). In low gravity condition, surface tension force is observed more dominant than body force which significantly altered the performance of a CPHP. In comparisons with ground level condition, more stable flow patterns are observed which led to the improved heat transfer performance of a CPHP in case of low gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Akachi, H., US Patent 4921041, 1990.

  2. Taft, B.S., Williams, A.D., and Drolen, B.L., Review of pulsating heat pipe working fluid selection, J. Thermophys. Heat Transfer, 2012, vol. 26, no. 4, pp. 651–656.

    Article  CAS  Google Scholar 

  3. Rittidesh, S. and Wannapakne, S., Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP), Appl. Therm. Eng., 2007, vol. 27, no. 11, pp. 1978–1985.

    Article  Google Scholar 

  4. Arab, M., Soltanieh, M., and Shafii, M.B., Experimental investigation of extra-long pulsating heat pipe application in solar water heaters, Exp. Therm. Fluid Sci., 2012, vol. 42, pp. 6–15.

    Article  Google Scholar 

  5. Clement, J. and Wang, X., Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application, Appl. Therm. Eng., 2013, vol. 50, no. 1, pp. 268–274.

    Article  Google Scholar 

  6. Groll, M. and Khandekar, S., State of art on pulsating heat pipe, Proc. 2nd Int. Conf. on Microchannels and Minichannels, New York, 2004.

  7. Dang, C., Jia, L., and Lu, Q., Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs, Appl. Therm. Eng., 2017, vol. 110, pp. 390–398.

    Article  Google Scholar 

  8. Natsume, K., Mito, T., Yanagi, N., Tamura, H., Tamada, T., Shikimachi, K., et al., Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets, Cryogenics, 2011, vol. 51, pp. 309–314.

    Article  CAS  Google Scholar 

  9. Fonseca, L.D., Pfotenhauer, J., and Miller, F., Results of three evaporator cryogenic helium pulsating heat pipe, Int. J. Heat Mass Transfer, 2018, vol. 120, pp. 1275–1286.

    Article  CAS  Google Scholar 

  10. Gan, Z., Sun, X., Jiao, B., Han, D., Deng, H., Wang, S., and Pfotenhauer, J., Experimental study on a hydrogen closed loop pulsating heat pipe with different adiabatic lengths, Heat Transfer Eng., 2019, vol. 40, nos. 3–4, pp. 205–214.

    Article  CAS  Google Scholar 

  11. Liang, Q., Li, Y., and Wang, Q., Effects of filling ratio and condenser temperature on thermal performance of a neon cryogenic oscillating heat pipe, Cryogenics, 2018, vol. 89, pp. 102–106.

    Article  CAS  Google Scholar 

  12. Fonseca, L.D., Miller, F., and Pfotenhauer, J., Experimental heat transfer analysis of a cryogenic nitrogen pulsating heat pipe at various liquid filling ratios, Appl. Therm. Eng., 2018, vol. 130, pp. 343–353.

    Article  CAS  Google Scholar 

  13. Bruce, R., Barba, M., Bonelli, A., and Baudouy, B., Thermal performance of a meter-scale horizontal nitrogen pulsating heat pipe, Cryogenics, 2018, vol. 96, pp. 66–74.

    Article  Google Scholar 

  14. Mameli, M., Araneo, L., Filippeschi, S., Marelli, L., Testa, R., and Marengo, M., Thermal response of a closed loop pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci., 2014, vol. 80, pp. 11–22.

    Article  CAS  Google Scholar 

  15. Gu, J., Kawaji, M., and Futamata, R., Effects of gravity on the performance of pulsating heat pipes, J. Thermophys. Heat Transfer, 2004, vol. 18, no. 3, pp. 370–378.

    Article  CAS  Google Scholar 

  16. Mangini, D., Mameli, M., Georgoulas, A., Araneo, L., Filippeschi, S., and Marengo, M.A., Pulsating heat pipe for space applications: Ground and microgravity experiments, Int. J. Therm. Sci., 2015, vol. 95, pp. 53–63.

    Article  CAS  Google Scholar 

  17. Mangini, D., Mameli, M., Fioriti, D., Araneo, L., Filippeschi, S., and Marengo, M., Hybrid pulsating heat pipe for space application with non-uniform heating patterns: ground and microgravity experiments, Appl. Therm. Eng., 2017, vol. 126, pp. 1029–1043.

    Article  CAS  Google Scholar 

  18. Ayel, V., Araneo, L., Marzorati, P., Romestant, A., Bertin, Y., and Marengo, M., Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid thermosyphon under various gravity levels, Heat Transfer Eng., 2019, vol. 40, nos. 3–4, pp. 227–237.

    Article  CAS  Google Scholar 

  19. Xu, D., Liu, H.M., Li, L.F., Huang, R.J., and Wang, W., Theoretical research of helium pulsating heat pipe under steady state conditions, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 101, p. 012052-1-6.

  20. Han, D.Y., Sun, X., Gan, Z.H., Luo, R.Y., Pfotenhauer, J.M., and Jiao, B., Numerical investigation on pulsating heat pipes with nitrogen or hydrogen, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 278, p. 012056.

  21. Pouryoussefi, S.M. and Zhang, Y., Numerical investigation of chaotic flow in a 2D closed-loop pulsating heat pipe, Appl. Therm. Eng., 2016, vol. 98, pp. 617–627.

    Article  Google Scholar 

  22. Lee, W.H., A pressure iteration scheme for two phase modeling, Technical Report LA-UR 79-975, Los Alamos, N.M.: Los Alamos Scientific Laboratory, 1979.

  23. Fadhl, B., Wrobel, L.C., and Jouhara, H., CFD modeling of a two-phase closed thermosyphon charged with R-134a and R404a, Appl. Therm. Eng., 2015, vol. 78, pp. 482–490.

    Article  CAS  Google Scholar 

  24. Wu, H.L., Peng, X.F., Ye, P., and Gong, Y.E., Simulation of refrigerant flow boiling in serpentine tubes, Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 1186–1195.

    Article  Google Scholar 

  25. Tong, B.Y., Wong, T.N., and Qoi, K.T., Closed-loop pulsating heat pipe, Appl. Therm. Eng., 2001, vol. 21, pp. 1845–1862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemantkumar B. Mehta.

Additional information

Special issue: “Two-phase flows in microchannels: hydrodynamics, heat and mass transfer, chemical reactions”. Edited by R.Sh. Abiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpak R. Sagar, Naik, H.B. & Mehta, H.B. CFD Analysis of Cryogenic Pulsating Heat Pipe with Near Critical Diameter under Varying Gravity Conditions. Theor Found Chem Eng 54, 64–76 (2020). https://doi.org/10.1134/S0040579520010212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520010212

Keywords:

Navigation