Skip to main content
Log in

Vulnerability to Copper Smelter Emissions in Species of the Herb–Dwarf Shrub Layer: Role of Differences in the Type of Diaspore Dispersal

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

The type of diaspore dispersal may have a significant effect on the vulnerability of herbaceous plants to anthropogenic transformation of ecosystems. However, there is still no unified opinion on the relationship between the type of diaspore dispersal and the processes of extinction and colonization. Here, descriptions of vegetation performed in the zone of impact from the Middle Ural Copper Smelter in the periods of high and low emission levels (1995–1998 and 2014–2016, respectively) have been analyzed to test two hypotheses: (1) the type of diaspore dispersal has an effect on plant vulnerability, with the species whose diaspores are dispersed farther being less vulnerable to habitat transformation; and (2) irrespective of the type of dispersal, recolonization is less intense under high than under low pollution levels. It has been found that the species richness of all plant groups highly varies in space: it decreases sharply in the zone of heavy toxic loads, but localities with high species richness occur even under conditions of heavy pollution. With the increasing pollution level, the species diversity within plant groups on a mesoscale (hundreds of meters) decreases more strongly than that on a macroscale (kilometers). Species with different types of diaspore dispersal differ from each other both in sensitivity to pollution and in the capacity for recolonization after reduction of emissions, but the relationship between vulnerability and the distance of diaspore dispersal is ambiguous. High sensitivity to pollution and low recolonization capacity have been revealed in species characterized by either the lowest (autochores) or the highest dispersal distance (epi- and endozoochores), with anemochores being the least vulnerable. The diversity of most groups in the zone of heavy pollution has remained low over the past 20 years; some positive shifts have occurred in myrmecochores and typical anemochores, with the dynamics of the latter being independent of pollution level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Haddad, N.M., Brudvig, L.A., Clobert, J., et al., Habitat fragmentation and its lasting impact on Earth’s ecosystems, Sci. Adv., 2015, vol. 1, no. 2.

  2. Kolk, J. and Naaf, T., Herb layer extinction debt in highly fragmented temperate forests: Completely paid after 160 years?, Biol. Conserv., 2015, vol. 182, pp. 164–172.

    Article  Google Scholar 

  3. Cadotte, M.W., Dinnage, R., and Tilman, D., Phylogenetic diversity promotes ecosystem stability, Ecology, 2012, vol. 93, no. 8, pp. 223–233.

    Article  Google Scholar 

  4. Cardinale, B.J., Duffy, J.E., Gonzalez, A., et al., Biodiversity loss and its impact on humanity, Nature, 2012, vol. 486, no. 7401, pp. 59–67.

    Article  CAS  PubMed  Google Scholar 

  5. Bukvareva, E.N., Rol’ nazemnykh ekosistem v regulyatsii klimata i mesto Rossii v postkiotskom protsesse (Role of Terrestrial Ecosystems in Climate Regulation, and the Place for Russia in the Post-Kyoto Process), Moscow: Litres, 2017.

  6. Gilliam, F.S., The ecological significance of the herbaceous layer in temperate forest ecosystems, AIBS Bull., 2007, vol. 57, no. 10, pp. 845–858.

    Google Scholar 

  7. Moore, P.T., Van Miegroet, H., and Nicholas, N.S., Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce–fir forest, Can. J. For. Res., 2007, vol. 37, no. 12, pp. 2689–2700.

    Article  CAS  Google Scholar 

  8. Milcu, A., Thebault, E., Scheu, S., and Eisenhauer, N., Plant diversity enhances the reliability of belowground processes, Soil Biol. Biochem., 2010, vol. 42, no. 12, pp. 2102–2110.

    Article  CAS  Google Scholar 

  9. Mikhailova, N.V., Bogdanova, N.E., and Mikhailov, A.V., The rate of area colonization by nemoral herbaceous species: A model approach, Byull. Mosk. O-va. Ispyt. Prir.,Otd. Biol., 2006, vol. 111, no. 1, pp. 37–44.

    Google Scholar 

  10. Baeten, L., Jacquemyn, H., Van Calster, H., et al., Low recruitment across life stages partly accounts for the slow colonization of forest herbs, J. Ecol., 2009, vol. 97, no. 1, pp. 109–117.

    Article  Google Scholar 

  11. Brunet, J., De Frenne, P., Holmström, E., and Mayr, M.L., Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs, Forest Ecol. Manag., 2012, vol. 278, pp. 55–62.

    Article  Google Scholar 

  12. Nordén, B., Dahlberg, A., Brandrud, T.E., et al., Effects of ecological continuity on species richness and composition in forests and woodlands: A review, Ecoscience, 2014, vol. 21, no. 1, pp. 34–45.

    Article  Google Scholar 

  13. Myers, J.A. and Harms, K.E., Seed arrival, ecological filters, and plant species richness: A meta-analysis, Ecol. Lett., 2009, vol. 12, no. 11, pp. 1250–1260.

    Article  PubMed  Google Scholar 

  14. Vittoz, P. and Engler, R., Seed dispersal distances: A typology based on dispersal modes and plant traits, Bot. Helv., 2007, vol. 117, no. 2, pp. 109–124.

    Article  Google Scholar 

  15. Bullock, J.M., Mallada González, L., Tamme, R., et al., A synthesis of empirical plant dispersal kernels, J. Ecol., 2017, vol. 105, no. 1, pp. 6–19.

    Google Scholar 

  16. Hemrova, L., Bullock, J.M., Hooftman, D.A.P., et al., Drivers of plant species’ potential to spread: The importance of demography versus seed dispersal, Oikos, 2017, vol. 126, no. 10, pp. 1493–1500.

    Article  Google Scholar 

  17. Levina, R.E., Morfologiya i ekologiya plodov (The Morphology and Ecology of Fruits), Leningrad: Nauka, 1987.

  18. Nathan, R., Schurr, F.M., Spiegel, O., et al., Mechanisms of long-distance seed dispersal, Trends Ecol. Evol., 2008, vol. 23, no. 11, pp. 638–647.

    Article  PubMed  Google Scholar 

  19. Higgins, S.I., Nathan, R., and Cain, M.L., Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?, Ecology, 2003, vol. 84, no. 8, pp. 1945–1956.

    Article  Google Scholar 

  20. Ash, J.D., Givnish, T.J., and Waller, D.M., Tracking lags in historical plant species' shifts in relation to regional climate change, Glob. Change Biol., 2017, vol. 23, no. 3, pp. 1305–1315.

    Article  Google Scholar 

  21. Fröborg, H. and Eriksson, O., Local colonization and extinction of field layer plants in a deciduous forest and their dependence upon life history features, J. Veget. Sci., 1997, vol. 8, no. 3, pp. 395–400.

    Article  Google Scholar 

  22. Ozinga, W.A., Römermann, C., Bekker, R.M., et al., Dispersal failure contributes to plant losses in NW Europe, Ecol. Lett., 2009, vol. 12, no. 1, pp. 66–74.

    Article  PubMed  Google Scholar 

  23. Marini, L., Bruun, H.H., Heikkinen, R.K., et al., Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss, Divers. Distrib., 2012, vol. 18, no. 9, pp. 898–908.

    Article  Google Scholar 

  24. García, C., Klein, E.K., and Jordano, P., Dispersal processes driving plant movement: Challenges for understanding and predicting range shifts in a changing world, J. Ecol., 2017, vol. 105, no. 1, pp. 1–5.

    Article  Google Scholar 

  25. Flinn, K.M., Microsite-limited recruitment controls fern colonization of post-agricultural forests, Ecology, 2007, vol. 88, no. 12, pp. 3103–3114.

    Article  PubMed  Google Scholar 

  26. Paal, T., Kütt, L., Lõhmus, K., and Liira, J., Both spatiotemporal connectivity and habitat quality limit the immigration of forest plants into wooded corridors, Plant Ecol., 2017, vol. 218, no. 4, pp. 417–431.

    Article  Google Scholar 

  27. Thomson, F.J., Moles, A.T., Auld, T.D., and Kingsford, R.T., Seed dispersal distance is more strongly correlated with plant height than with seed mass, J. Ecol., 2011, vol. 99, no. 6, pp. 1299–1307.

    Article  Google Scholar 

  28. Albert, A., Auffret, A.G., Cosyns, E., et al., Seed dispersal by ungulates as an ecological filter: A trait-based meta-analysis, Oikos, 2015, vol. 124, no. 9, pp. 1109–1120.

    Article  Google Scholar 

  29. Sonkoly, J., Deak, B., Valko, O., et al., Do large-seeded herbs have a small range size? The seed mass-distribution range trade-off hypothesis, Ecol. Evol., 2017, vol. 7, no. 24, pp. 11204–11212.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beckman, N.G., Bullock, J.M., and Salguero-Gomez, R., High dispersal ability is related to fast life-history strategies, J. Ecol., 2018, vol. 106, no. 4, pp. 1349–1362.

    Article  Google Scholar 

  31. Evstigneev, O.I., Korotkov, V.N., Murashev, I.A., and Voevodin, P.V., Zoochory and peculiarities of forest community formation: A review, Russ. J. Ecosyst. Ecol., 2017, no. 1, pp. 1–16.

  32. Forey, E., Barot, S., Decaens, T., et al., Importance of earthworm–seed interactions for the composition and structure of plant communities: A review, Acta Oecol., 2011, vol. 37, no. 6, pp. 594–603.

    Article  Google Scholar 

  33. Lepková, B., Horčičková, E., and Vojta, J., Endozoochorous seed dispersal by free-ranging herbivores in an abandoned landscape, Plant Ecol., 2018, vol. 219, no. 9, pp. 1127–1138.

    Article  Google Scholar 

  34. Penn, H.J. and Crist, T.O., From dispersal to predation: A global synthesis of ant–seed interactions, Ecol. Evol., 2018, vol. 8, no. 18, pp. 9122–9138.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lustenhouwer, N., Moran, E.V., and Levine, J.M., Trait correlations equalize spread velocity across plant life histories, Glob. Ecol. Biogeogr., 2017, vol. 26, no. 12, pp. 1398–1407.

    Article  Google Scholar 

  36. Ehrlén, J. and Eriksson, O., Dispersal limitation and patch occupancy in forest herbs, Ecology, 2000, vol. 81, no. 6, pp. 1667–1674.

    Article  Google Scholar 

  37. Verheyen, K., Hermy, M., and Thompson, K., Recruitment and growth of herb-layer species with different colonizing capacities in ancient and recent forests, J. Veget. Sci., 2004, vol. 15, no. 1, pp. 125–134.

    Article  Google Scholar 

  38. Meadows, M. and Watmough, S.A., An assessment of long-term risks of metals in Sudbury: A critical loads approach, Water Air Soil Pollut., 2012, vol. 223, no. 7, pp. 4343–4354.

    Article  CAS  Google Scholar 

  39. Trubina, M.R., Vorobeichik, E.L., Khantemirova, E.V., et al., Dynamics of forest vegetation after the reduction of industrial emissions: Fast recovery or continued degradation?, Dokl. Biol. Sci., 2014, vol. 458, pp. 302–305.

    Article  CAS  PubMed  Google Scholar 

  40. Vorobeichik, E.L. and Kaigorodova, S.Yu., Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission, Euras. Soil Sci., 2017, vol. 50, no. 8, pp. 977–990.

    Article  CAS  Google Scholar 

  41. Trubina, M.R. and Vorobeichik, E.L., Severe industrial pollution increases the β-diversity of plant communities, Dokl. Biol. Sci., 2012, vol. 442, pp. 17–19.

    Article  CAS  PubMed  Google Scholar 

  42. Prokaev, V.I., Fiziko-geograficheskoe raionirovanie Sverdlovskoi oblasti (Physiographic Zoning of Sverdlovsk Oblast), Sverdlovsk: Sverdlovsk. Ped. Inst., 1976.

  43. Metzger, J.P., Martensen, A.C., Dixo, M., et al., Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region, Biol. Conserv., 2009, vol. 142, no. 6, pp. 1166–1177.

    Article  Google Scholar 

  44. Hylander, K. and Ehrlén, J., The mechanisms causing extinction debts, Trends Ecol. Evol., 2013, vol. 28, no. 6, pp. 341–346.

    Article  PubMed  Google Scholar 

  45. Ernst, W.H.O., Evolution of metal tolerance in higher plants, For. Snow Landsc. Res., 2006, vol. 80, no. 3, pp. 251–274.

    Google Scholar 

  46. Dulya, O.V., Mikryukov, V.S., and Vorobeichik, E.L., Strategies of adaptation to heavy metal pollution in Deschampsia caespitosa and Lychnis flos-cuculi: Analysis based on dose–response relationship, Russ. J. Ecol., 2013, vol. 44, no. 4, pp. 271–281.

    Article  CAS  Google Scholar 

  47. Ginocchio, R., Carvallo, G., Toro, I., et al., Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in central Chile, Environ. Pollut., 2004, vol. 127, no. 3, pp. 343–352.

    Article  CAS  PubMed  Google Scholar 

  48. Kataev, G.D., Suornela, J., and Palokangas, P., Densities of microtine rodents along a pollution gradient from a copper–nickel smelter, Oecologia, 1994, vol. 97, no. 4, pp. 491–498.

    Article  CAS  PubMed  Google Scholar 

  49. Bel’skii, E. and Lyakhov, A., Response of the avifauna to technogenic environmental pollution in the southern taiga zone of the Middle Urals, Russ. J. Ecol., 2003, vol. 34, no. 3, pp. 181–187.

    Article  Google Scholar 

  50. Mukhacheva, S.V., Spatiotemporal population structure of the bank vole in a gradient of technogenic environmental pollution, Russ. J. Ecol., 2007, vol. 38, no. 3, pp. 161–167.

    Article  Google Scholar 

  51. Mukhacheva, S.V., Davydova, Yu.A., and Kshnyasev, I.A., Responses of small mammal community to environmental pollution by emissions from a copper smelter, Russ. J. Ecol., 2010, vol. 41, no. 6, pp. 513–518.

    Article  CAS  Google Scholar 

  52. Eeva, T., Belskii, E., Gilyazov, A.S., and Kozlov, M.V., Pollution impacts on bird population density and species diversity at four non-ferrous smelter sites, Biol. Conserv., 2012, vol. 150, no. 1, pp. 33–41.

    Article  Google Scholar 

  53. Boch, S., Berlinger, M., Prati, D., and Fischer, M., Is fern endozoochory widespread among fern-eating herbivores?, Plant Ecol., 2016, vol. 217, no. 1, pp. 13–20.

    Article  Google Scholar 

  54. Evstigneev, O.I., Voevodin, P.V., Korotkov, V.N., and Murashev, I.A., Zoochory and the distance of seed transfer in conifer–broadleaf forests of Eastern Europe, Usp. Sovrem. Biol., 2013, vol. 133, no. 4, pp. 392–400.

    Google Scholar 

  55. Berglund, Å.M.M. and Nyholm, N.E.I., Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions, Sci. Tot. Environ., 2011, vol. 409, no. 20, pp. 4326–4334.

    Article  CAS  Google Scholar 

  56. Eeva, T. and Lehikoinen, E., Long-term recovery of clutch size and egg shell quality of the pied flycatcher (Ficedula hypoleuca) in a metal polluted area, Environ. Pollut., 2015, vol. 201, pp. 26–33.

    Article  CAS  PubMed  Google Scholar 

  57. Chillo, V. and Anand, M., Effects of past pollution on zoochory in a recovering mixed temperate-boreal forest, Ecoscience, 2012, vol. 19, no. 3, pp. 258–265.

    Article  Google Scholar 

  58. Belskaya, E., Gilev, A., and Belskii, E., Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the Middle Ural Copper Smelter, Russia, Environ. Sci. Pollut. Res., 2017, vol. 24, no. 11, pp. 10768–10777.

    Article  Google Scholar 

  59. Garrido, J.L., Rey, P.J., and Herrera, C.M., Influence of elaiosome on postdispersal dynamics of an ant-dispersed plant, Acta Oecol., 2009, vol. 35, no. 3, pp. 393–399.

    Article  Google Scholar 

  60. Lässig, R. and Močalov, S.A., Frequency and characteristics of severe storms in the Urals and their influence on the development, structure and management of the boreal forests, Forest Ecol. Manag., 2000, vol. 135, nos. 1–3, pp. 179–194.

    Article  Google Scholar 

  61. Vorobeichik, E.L., Changes in the depth of forest litter under chemical pollution, Ekologiya, 1995, vol. 26, no. 4, pp. 278–284.

    Google Scholar 

  62. Xiong, S. and Nilsson, C., The effects of plant litter on vegetation: A meta-analysis, J. Ecol., 1999, vol. 87, no. 6, pp. 984–994.

    Article  Google Scholar 

  63. Weltzin, J.F., Keller, J.K., Bridgham, S.D., et al., Litter controls plant community composition in a northern fen, Oikos, 2005, vol. 110, no. 3, pp. 537–546.

    Article  Google Scholar 

  64. Verheyen, K., Guntenspergen, G.R., Biesbrouck, B., and Hermy, M., An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale, J. Ecol., 2003, vol. 91, no. 5, pp. 731–742.

    Article  Google Scholar 

  65. Vorobeichik, E.L., Trubina, M.R., Khantemirova, E.V., and Bergman, I.E., Long-term dynamic of forest vegetation after reduction of copper smelter emissions, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 498–507.

    Article  CAS  Google Scholar 

  66. Rose, R., Monteith, D.T., Henrys, P., et al., Evidence for increases in vegetation species richness across UK environmental change network sites linked to changes in air pollution and weather patterns, Ecol. Indic., 2016, vol. 68, pp. 52–62.

    Article  CAS  Google Scholar 

  67. Stevens, C.J., How long do ecosystems take to recover from atmospheric nitrogen deposition?, Biol. Conserv., 2016, vol. 200, Suppl. C, pp. 160–167.

Download references

ACKNOWLEDGMENTS

The author is grateful to E.L. Vorobeichik for providing data on metal concentrations in the litter, to I.N. Mikhailova for organizing field studies, and to the anonymous reviewer and E.L. Vorobeichik for their valuable comments on the manuscript.

Funding

This study was performed under state contract of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Trubina.

Additional information

Translated by N. Gorgolyuk

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubina, M.R. Vulnerability to Copper Smelter Emissions in Species of the Herb–Dwarf Shrub Layer: Role of Differences in the Type of Diaspore Dispersal. Russ J Ecol 51, 107–117 (2020). https://doi.org/10.1134/S1067413620020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620020125

Keywords:

Navigation