Skip to main content
Log in

Effect of Soil Conditions on the Level of Genetic Diversity in the Xerohalophyte Kochiaprostrata (L.) Schrad. (Chenopodiaceae)

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Genetic polymorphism has been analyzed in Kochia prostrata populations growing on different soils with contrasting salt contents in eight variants of desert steppe plant communities. All the populations are characterized by a deficiency of heterozygotes (11.1–77.5%), with populations growing on different soil types showing significant differences in the level of observed heterozygosity. Significant genetic differentiation between two populations on dark-humus solonchaks indicates that soil conditions may have an effect not only on the level of diversity but also on the genetic structure of populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ouborg, N.J., Vergeer, P., and Mix, C., The rough edges of the conservation genetics paradigm for plants, J. Ecol., 2006, vol. 94, no. 6, pp. 1233–1248. https://doi.org/10.1111/j.1365-2745.2006.01167.x

    Article  Google Scholar 

  2. Dostalek, T., Munzbergova, Z., and Plactova, I., High genetic diversity in isolated populations of Thesium ebracteatum at the edge of its distribution range, Conserv. Genet., 2014, vol. 15, no. 1, pp. 75–86. https://doi.org/10.1007/s10592-013-0522-7

    Article  Google Scholar 

  3. Linhart, Y.B. and Grant, M.C., Evolutionary significance of local genetic differentiation in plants, Annu. Rev. Ecol. Syst., 1996, vol. 27, no. 1, pp. 237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237

    Article  Google Scholar 

  4. Odat, N., Jetschke, G., and Hellwig, F.H., Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities, Mol. Ecol., 2004, vol. 13, no. 5, pp. 1251–1257. https://doi.org/10.1111/j.1365-294x.2004.02115.x

    Article  CAS  PubMed  Google Scholar 

  5. Forester, B.R., Jones, M.R., Joost, S., et al., Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes, Mol. Ecol., 2015, vol. 25, no. 1, pp. 104–120. https://doi.org/10.1111/mec.13476

    Article  CAS  PubMed  Google Scholar 

  6. Nevo, E., Krugman, T., and Beiles, A., Edaphic natural selection of allozyme polymorphisms in Aegilops peregrina at a Galilee microsite in Israel, Heredity, 1994, vol. 72, no. 2, pp. 109–112. https://doi.org/10.1038/hdy.1994.16

    Article  CAS  Google Scholar 

  7. Prentice, H.C., Lonn, M., Lager, H., et al., Changes in allozyme frequencies in Festuca ovina populations after a 9-year nutrient/water experiment, J. Ecol., 2000, vol. 88, no. 2, pp. 331–347. https://doi.org/10.1046/j.1365-2745.2000.00454.x

    Article  CAS  Google Scholar 

  8. Orians, C.M., Lower, S., Fritz, R.S., et al., The effects of plant genetic variation and soil nutrients on secondary chemistry and growth in a shrubby willow, Salix sericea: Patterns and constraints on the evolution of resistance traits, Biochem. Syst. Ecol., 2003, vol. 31, no. 3, pp. 233–247. https://doi.org/10.1016/S0305-1978(02)00144-8

    Article  CAS  Google Scholar 

  9. Leonardi, S., Piovani, P., Scalfi, M., et al., Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in central Italy, J. Hered., 2009, vol. 103, no. 3, pp. 408–417. https://doi.org/10.1093/jhered/ess004

    Article  Google Scholar 

  10. Lega, M., Fior, S., Li, M., et al., Genetic drift linked to heterogeneous landscape and ecological specialization drives diversification in the alpine endemic columbine Aquilegia thalictrifolia,J. Hered., 2014, vol. 105, no. 4, pp. 542–554.

    Article  Google Scholar 

  11. Shuyskaya, E., Toderich, K., Gismatullina, L., et al., Genetic diversity of two annual Salsola species (Chenopodiaceae) among habitat types in desert plant communities, Biologia, 2017, vol. 72, no. 3, pp. 267–276.

    Article  Google Scholar 

  12. Joshi, J., Schmid, B., Caldeira, M.C., et al., Local adaptation enhances performance of common plant species, Ecol. Lett., 2001, vol. 4, no. 6, pp. 536–544.

    Article  Google Scholar 

  13. Balyan G. A. Prutnyak prostertyi i ego kul’tura v Kirgizii (Kochia prostrata in Kyrgyzstan), Frunze: Kyrgyzstan, 1972.

    Google Scholar 

  14. Harrison, R.D., Chatterton, N.J., Waldron, B.L., et al., Forage Kochia. Its Compatibility and Potential Aggressiveness on intermountation rangelands, Research Report 162, Utah Agricultural Experiment Station, Utah State University, Logan, Utah, 2000.

  15. Orlovsky, N.S., Japakova, U.N., Shulgina, I., et al., Comparative study of seed germination and growth of Kochia prostrata and Kochia scoparia (Chenopodiaceae) under salinity, J. Arid Environ., 2011, vol. 75, no. 6, pp. 532–537. https://doi.org/10.1016/j.jaridenv.2011.01.014

    Article  Google Scholar 

  16. Toderich, K.N., Babokulov, N.A., Rabbimov, A.R., et al., Kochia prostrata (L.) Schrad. - tsennoe kormovoe rastenie dlya uluchsheniya pustynnykh i polupustynnykh pastbishch v Tsentral’noi Azii (Kochia prostrata (L.) Schrad.: A Valuable Forage Plant for Improving Desert and Semidesert Rangelands in Central Asia), Tashkent: Fan va Texnologiya, 2014.

  17. Shuyskaya, E.V., Toderich, K.N., and Voinitska-Poltorak, A., Genetic variation of Kochia prostrata (L.) Schrad. in the arid zone of Uzbekistan, Probl. Osvoeniya Pustyn’, 2001, no. 3, pp. 24–31.

  18. Doskach, A.G., Prirodnoe raionirovanie Prikaspiiskoi polupustyni (Natural Zonation of the Caspian Semidesert), Moscow: Nauka, 1979.

  19. Sapanov, M.K. and Sizemskaya, M.L., Climate change and dynamics of virgin land vegetation in the nortern Caspian region, Povolzh. Ekol. Zh., 2015, no. 3, pp. 307–320.

  20. Grebenshchikov, O.S., Climatic characteristics of the ranges of zonal natural ecosystems, in Geograficheskie zakonomernosti struktury i funktsionirovaniya ekosistem (Geographic Patterns in the Structure and Functioning of Ecosystems), Bazilevich, N.I., Grebenshchikov, O.S., and Tishkov, A.A., Eds., Moscow: Nauka, 1986, pp. 31–50.

  21. Kovda, V.A., Pochvy Prikaspiiskoi nizmennosti (severo-zapadnoi chasti) (Soils of the Northwestern Caspian Lowland), Moscow: Akad. Nauk SSSR, 1950.

  22. Rode, A.A. and Pol’skii, M.N., Soils of the Dzhanybek Station: Their morphological structure, mechanical and chemical composition, and physical properties, Tr. Pochv. Inst.im.V.V. Dokuchaeva, 1961, vol. 56, pp. 3–214.

    CAS  Google Scholar 

  23. Shabanova, N.P. and Lebedeva, M.P., Properties of solonetzes on terraces of salt lakes Bulukhta and Khaki in the Caspian Lowland, Euras. Soil Sci., 2016, vol. 49, no. 6, pp. 591–605. https://doi.org/10.7868/S0032180X16060113

    Article  CAS  Google Scholar 

  24. Zasolennye pochvy Rossii (Saline Soils in Russia), Shishov, L.L. and Pankov, E.I., Eds., Moscow: Akademkniga, 2006.

    Google Scholar 

  25. Konyushkova, M.V. and Kozlov, D.N., Automated analysis of the distribution of dark-colored chernozem-like soils in the Northern Caspian region based on satellite imaging data: The example of the Dzhanybek station, Arid.Ekosist., 2010, vol. 16, no. 5, pp. 46–56.

    Google Scholar 

  26. Polevoi opredelitel’ pochv (Soil Field Guide), Moscow: Pochv. Inst. im. V.V. Dokuchaeva, 2008.

  27. Vorob’eva, L.A., Khimicheskii analiz pochv (Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1998.

  28. Lavrenko, E.M., Karamysheva, Z.V., and Nikulina, R.I., Stepi Severnoi Evrazii (Steppes of Northern Eurasia), Leningrad: Nauka, 1991.

  29. Safronova, I.N., Characteristics of vegetation in Pallasovsky district, Volgograd oblast, in Bioraznoobrazie i prirodopol’zoavanie v Priel’ton’e: Sb. nauch. tr. (Biodiversity and Nature Management in Lake Elton Region: Collected Scientific Paters), Volgograd: PrinTerra, 2006, pp. 5–9.

  30. Polevaya geobotanika (Field Geobotany), vol. 3, Moscow: Nauka, 1964.

  31. Rabotnov, T.A., Fitotsenologiya (Phytocenology), Moscow: Mosk. Gos. Univ., 1992.

    Google Scholar 

  32. Safronova, I.N., On problems in the zoning of arid regions in European Russia, Bot. Zh., 2012, vol. 97, no. 6, pp. 705–711.

    Article  Google Scholar 

  33. Cherepanov, S.K., Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) (Vascular Plants of Russia and Neighboring Countries of the Former Soviet Union), St. Petersburg: Mir i Sem’ya, 1995.

  34. Sukhorukov, A.P., Karpologiya semeistva Chenopodiaceae v svyazi s problemami filogenii, sistematiki i diagnostiki ego predstavitelei (Carpology of the Family Chenopodiaceae in Relation to Problems in the Phylogeny, Systematics, and Diagnosis of Its Representatives), Tula: Grif i K, 2014.

  35. Shuyskaya E.V., Gismatullina L.G., Toderich K.N., et al., Genetic differentiation of black saxaul, Haloxylon aphyllum (Chenopodiaceae), along a soil salinity gradient in the Kyzylkum Desert, Russ. J. Ecol., 2012, vol. 43, no. 2, pp. 302–306.

    Article  Google Scholar 

  36. Wright, S., Evolution and the Genetics of Populations, vol. 2: The Theory of Gene Frequencies, Chicago: Univ. of Chicago Press, 1984.

    Google Scholar 

  37. Yeh, F.C., Yang, R.C., and Boyle, T., POPGEN, Version 1.32: Microsoft Windows-based Freeware for Population Genetic Analysis, Edmonton: Univ. of Alberta/CIFOR, 1999.

    Google Scholar 

  38. Hamrick, J.L., Godt, M.J., and Sherman-Broyles, S.L., Factors influencing levels of genetic diversity in woody plant species, New Forests, 1992, vol. 6, pp. 95–124.

    Article  Google Scholar 

  39. Martinez-Palacios, A., Eguiarte, L.E., and Furnier, G.R., Genetic diversity of the endangered endemic Agave victoriae-reginae (Agavaceae) in the Chihuahuan Desert, Am. J. Bot., 1999, vol. 86, no. 8, pp. 1093–1098. https://doi.org/10.2307/2656971

    Article  CAS  PubMed  Google Scholar 

  40. Ferrer, M.M., Eguiarte, L.E., and Mantana, C., Genetic structure and outcrossing rates in Flourensia cernua (Asteraceae) growing at different densities in the south-western Chihuahuan Desert, Ann. Bot., 2004, vol. 94, no. 3, pp. 419–426. https://doi.org/10.1093/aob/mch159

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wolff, S.L. and Jefferies, R.L., Morphological and isozyme variation in Salicornia europaea (s.l.) (Chenopodiaceae) in North America, Can. J. Bot., 1987, vol. 65, no. 7, pp. 1410–1419. https://doi.org/10.1139/b87-195

    Article  Google Scholar 

  42. Song, B. and Zhang, Z., Measuring morphology and genetic biodiversity of the Suaeda salsa population in the Huanghe River delta, Russ. J. Ecol., 2007, vol. 38, no. 4, pp. 277–284.

    Article  Google Scholar 

  43. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.

  44. Shuyskaya, E.V., Rakhmankulova, Z.F., and Suyundukov, Ya.T., Genetic diversity in annual xerohalophytes of the family Chenopodiaceae along soil moisture and salinity gradients, Russ. J. Ecol., 2019, vol. 50, no. 1, pp. 13–19.

    Article  CAS  Google Scholar 

  45. Flowers, T.J. and Colmer, T.D., Plant salt tolerance: Adaptation in halophytes, Ann. Bot., 2015, vol. 115, no. 3, pp. 327–331. https://doi.org/10.1093/aob/mcu267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huff, D.R., Quinn, J.A., Higgins, B., et al., Random amplified polymorphic DNA (RAPD) variation among native little bluestem [Schizachyrium scoparium (Michx.) Nash] populations from sites of high and low fertility in forest and grasslands biomes, Mol. Ecol., 1998, vol. 7, no. 11, pp. 1591–1597. https://doi.org/10.1046/j.1365-294x.1998.00473.x

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-016-00129a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shuyskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuyskaya, E.V., Nukhimovskaya, Y.D., Lebedeva, M.P. et al. Effect of Soil Conditions on the Level of Genetic Diversity in the Xerohalophyte Kochiaprostrata (L.) Schrad. (Chenopodiaceae). Russ J Ecol 51, 118–126 (2020). https://doi.org/10.1134/S1067413620020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620020101

Keywords:

Navigation