Skip to main content
Log in

Nitrogen Nutrition of Plants in an Alpine Lichen Heath under the Conditions of Soil Enrichment with Biogenic Elements

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The results of a long-term experiment on the enrichment of the soil (Umbric Leptosol) of an alpine lichen heath with biogenic elements have shown that calcium addition and reduction of soil acidity do not change the nitrogen regime of the soil and patterns of nitrogen nutrition of plants. The increase in phosphorus availability contributes to the mobilization of soil organic nitrogen and shifts in the role of mycorrhiza in the nitrogen nutrition of plants, which determines their heavier isotopic nitrogen composition. At the same time, this reduces the intensity of nitrogen fixation by a nitrogen-fixing legume species, Oxytropis kubanensis. The increase in the availability of nitrogen leads to its active uptake by all studied plant species except Oxytropis kubanensis, as well as to the heavier isotopic nitrogen composition of plants. However, changes in the nitrogen status differ between plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Billings, W.D., Adaptations and origins of alpine plants, Arct. Alp. Res., 1974, vol. 6, p. 129–142.

    Article  Google Scholar 

  2. Bowman, W.D. and Seastedt, T.R., Structure and Function of an Alpine Ecosystem: Niwot Ridge, Colorado, New York: Oxford Univ. Press, 2001.

    Google Scholar 

  3. El’kanova, M.Kh., Akhmetzhanova, A.A., Elumeeva, T.G., and Onipchenko, V.G., Changes in the aboveground phytomass structure of an alpine heath in the Northwestern Caucasus upon long-term treatment with mineral nutrient elements, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., vol. 121, no. 2, pp. 47–58.

  4. Körner, C., Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Berlin: Springer-Verlag, 2003.

  5. Dawes, M.A., Schleppi, P., and Hagedorn, F., The fate of nitrogen inputs in a warmer alpine treeline ecosystem: A 15N labeling study, J. Ecol., 2017, vol. 105, pp. 1723–1737.

    Article  CAS  Google Scholar 

  6. Chapin, F.S., Shaver, G.R., Giblin, A.E., et al., Responses of Arctic tundra to experimental and observed changes in climate, Ecology, 1995, vol. 76, pp. 694–711.

    Article  Google Scholar 

  7. Bai, E., Li, S., Xu, W., et al., A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics, New Phytol., 2013, vol. 199, pp. 441–451.

    Article  Google Scholar 

  8. Onipchenko, V.G., Makarov, M.I., Akhmetzhanova, A.A., et al., Alpine plant functional group responses to fertilizer addition depend on abiotic regime and community composition, Plant Soil, 2012, vol. 357, pp. 103–115.

    Article  CAS  Google Scholar 

  9. Makarov, M.I., Leoshkina, N.A., Ermak, A.A., and Malysheva, T.I., Seasonal dynamics of the mineral nitrogen forms in mountain-meadow alpine soils, Euras. Soil Sci., 2010, vol. 43, no. 8, pp. 969–978.

    Google Scholar 

  10. Lavrenov, N.G., Zauzanova, L.D., and Onipchenko, V.G., Seed reproduction traits of alpine plants depend on soil enrichment, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 545–550.

    Article  Google Scholar 

  11. Kandeler, E., Ammonium, in Methods in Soil Biology, Berlin: Springer-Verlag, 1996, pp. 406‒408.

    Google Scholar 

  12. Dorich, R.A. and Nelson, D.W., Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils, J. Soil Sci. Soc. Am., 1984, vol. 48, pp. 72–75.

    Article  CAS  Google Scholar 

  13. Makarov, V.I., Effect of carbamide doses and irrigation norms on ammonium emission from agro-sod-podzolic medium loam soil, Vestn. Altai. Gos. Agrarn. Univ., 2017, no. 6, pp. 54–60.

  14. Makarov, M.I., Malysheva, T.I., Ermak, A.A., et al., Symbiotic nitrogen fixation in the alpine community of a lichen heath of the Northwestern Caucasus region (the Teberda Reserve), Euras. Soil Sci., 2011, vol. 44, no. 12, pp. 1381–1388.

    Article  Google Scholar 

  15. Soudzilovskaia, N.A., Aksenova, A.A., Makarov, M.I., et al., Legumes affect alpine tundra community composition via multiple biotic interactions, Ecosphere, 2012, vol. 3, UNSP 33.

  16. Miller, A.E. and Bowman, W.D., Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: Do species partition by nitrogen form?, Oecologia, 2002, vol. 130, pp. 609–616.

    Article  Google Scholar 

  17. Makarov, M.I., The nitrogen isotopic composition in soils and plants: Its use in environmental studies (a review), Euras. Soil Sci., 2009, vol. 42, no. 12, pp. 1335–1347.

    Article  Google Scholar 

  18. Makarov, M.I., Malysheva, T.I., Cornelissen, J.H.C., et al., Consistent patterns of 15N distribution through soil profiles in diverse alpine and tundra ecosystems, Soil Biol. Biochem., 2008, vol. 40, pp. 1082‒1089.

    Article  CAS  Google Scholar 

  19. Craine, J.M., Brookshire, E.N.J., Cramer, M.D., et al., Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils, Plant Soil, 2015, vol. 396, pp. 1–26.

    Article  CAS  Google Scholar 

  20. Legume Nitrogen Fixation in Soils with Low Phosphorus Availability: Adaptation and Regulatory Implications, Sulieman, S. and Tran, L.S.P., Eds., Springer, 2017.

    Google Scholar 

  21. Clarkson, B.V., Schipper, L.A., Moyersoen, B., and Silvester, W.B., Foliar 15N natural abundance indicates phosphorus limitation of bog species, Oecologia, 2005, vol. 144, pp. 550–557.

    Article  Google Scholar 

  22. Dijkstra, P., Ishizu, A., Doucett, R., et al., 13C and 15N natural abundance of the soil microbial biomass, Soil Biol. Biochem., 2006, vol. 38, pp. 3257–3266.

    Article  CAS  Google Scholar 

  23. Portl, K., Zechmeister-Boltenstern, S., Wanek, W., et al., Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils, Plant Soil, 2007, vol. 295, pp. 79–94.

    Article  Google Scholar 

  24. Onipchenko, V.G. and Zobel, M., Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the Northwestern Caucasus, Folia Geobot., 2000, vol. 35, pp. 1–11.

    Article  Google Scholar 

  25. Veresoglou, S.D., Chen, B., and Rillig, M.C., Arbuscular mycorrhiza and soil nitrogen cycling, Soil Biol. Biochem., 2012, vol. 46, pp. 53–62.

    Article  CAS  Google Scholar 

  26. Hodge, A. and Storer, K., Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems, Plant Soil, 2015, vol. 386, pp. 1–19.

    Article  CAS  Google Scholar 

  27. Chen, Y.-L., Zhang, X., Ye, J.-S., et al., Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia, Soil Biol. Biochem., 2014, vol. 69, pp. 371–381.

    Article  CAS  Google Scholar 

  28. Hobbie, E.A. and Hogberg, P., Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics, New Phytol., 2012, vol. 196, pp. 367–382.

    Article  CAS  Google Scholar 

  29. Makarov, M.I., Onipchenko, V.G., Malysheva, T.I., et al., Determinants of 15N natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus, Arct. Antarct. Alp. Res., 2014, vol. 46, pp. 581–590.

    Article  Google Scholar 

  30. Makarov, M.I., The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: A review, Euras. Soil Sci., 2019, vol. 52, no. 2, pp. 193–205.

    Article  CAS  Google Scholar 

  31. Schweiger, P.F., Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder, J. Plant Physiol., 2016, vol. 205, pp. 84–92.

    Article  CAS  Google Scholar 

  32. Makarov, M.I., Malysheva, T.I., and Menyailo, O.V., Isotopic composition of nitrogen and transformation of nitrogen compounds in meadow-alpine soils, Euras. Soil Sci., 2019, vol. 52, no. 9, pp. 1028–1037.

    Article  CAS  Google Scholar 

  33. Dijkstra, P., Williamson, C., Menyailo, O., et al., Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow, Isotopes Environ. Health Studies, 2003, vol. 39, pp. 29–39.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 16-14-10208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Makarov.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.I., Lavrenov, N.G., Onipchenko, V.G. et al. Nitrogen Nutrition of Plants in an Alpine Lichen Heath under the Conditions of Soil Enrichment with Biogenic Elements. Russ J Ecol 51, 99–106 (2020). https://doi.org/10.1134/S1067413620020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620020083

Keywords:

Navigation