Skip to main content
Log in

Characterization of Hadfield Steels Subjected to Various Heat-Treating Processes by Nondestructive Eddy Current Method

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A nondestructive eddy current method has been used to characterize microstructural features of Hadfield steels subjected to various conditions of heat treatment. The heat treatment parameters including quenching media (furnace, air, and water) and tempering temperatures (in the range of 200–600°C) were varied to obtain different microstructures. X-ray diffraction method, scanning electron microscopic observations, and hardness testing were utilized to characterize the phases formed in microstructure and mechanical properties. Quantitative values of carbide and pearlite structures were determined using an image processing software applied on microscopic images. Effect of microstructural features (type, fraction, and morphology of the formed phases) on the eddy current outputs (RMS voltage, normalized impedance, and phase angle) have been evaluated. The study demonstrates that the eddy current method could be used to detect microstructural changes of heat treated Hadfield steel, nondestructively. The results also show correlation coefficients of over 93% in determining austenitic matrix fraction by eddy current technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Srivastava, A.K. and Das, K., Microstructural characterization of Hadfield austenitic manganese steel, J. Mater. Sci., 2008, vol. 43, no. 16, pp. 5654–5658.

    Article  CAS  Google Scholar 

  2. Moghaddam, E.G., Varahram, N., and Davami, P., On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel, Mater. Sci. Eng. A, 2012, vol. 532, pp. 260–266.

  3. Curiel-Reyna, E., Contreras, J., Rangel-Ortis, T., Herrera, A., Banos, L., Real, A.D., and Rodríguez, M., Effect of carbide precipitation on the structure and hardness in the heat-affected zone of Hadfield steel after post-cooling treatments, Mater. Manuf. Process., 2007, vol. 23, no. 1, pp. 14–20.

    Article  Google Scholar 

  4. Bayraktar, E., Khalid, F.A., and Levaillant, C., Deformation and fracture behaviour of high manganese austenitic steel, J. Mater. Process. Technol., 2004, vol. 147, no. 2, pp. 145–154.

    Article  CAS  Google Scholar 

  5. Hutchinson, B. and Ridley, N., On dislocation accumulation and work hardening in Hadfield steel, Scripta Mater., 2006, vol. 55, no. 4, pp. 299–302.

    Article  CAS  Google Scholar 

  6. Karaman, I., Sehitoglu, H., Beaudoin, A., Chumlyakov, Y.I., Maier, H., and Tome, C., Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip, Acta Mater., 2000, vol. 48, no. 9, pp. 2031–2047.

    Article  CAS  Google Scholar 

  7. Sant, S. and Smith, R., A study in the work-hardening behaviour of austenitic manganese steels, J. Mater. Sci., 1987, vol. 22, no. 5, pp. 1808–1814.

    Article  CAS  Google Scholar 

  8. Smith, R., DeMonte, A., and Mackay, W., RETRACTED: Development of high-manganese steels for heavy duty cast-to-shape applications, J. Mater. Process. Technol., 2004, vols.153–154, pp. 589–595.

  9. Martín, M., Raposo, M., Druker, A., Sobrero, C., and Malarría, J., Influence of pearlite formation on the ductility response of commercial Hadfield steel, Metallogr., Microstruct., Anal., 2016, vol. 5, no. 6, pp. 505–511.

    Google Scholar 

  10. Ding, Z., Liang, B., Zhao, R., and Chen, C., Precipitation of carbides in early aging stages and their crystallographic orientations in Hadfield steel Mn13, Met. Sci. Heat Treat., 2015, vol. 57, nos. 1–2, pp. 18–21.

  11. Osorio, G.B., Sthepa, H.S., Ramos, J., Durán, J., and Alcázar, G.P., Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel, Hyperfine Interact., 2017, vol. 238, no. 1, pp. 56–67.

    Article  Google Scholar 

  12. Gruzin, P., Grigorkin, V., and Moskaleva, L., Transformations in austenitic manganese steel, Met. Sci. Heat Treat., 1969, vol. 11, no. 1, pp. 5–8.

    Article  Google Scholar 

  13. Hutchinson, C. and Shiflet, G., The formation of partitioned pearlite at temperatures above the upper Ae1 in an Fe–C–Mn steel, Scripta Mater., 2004, vol. 50, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  14. Batista, L., Rabe, U., Altpeter, I., Hirsekorn, S., and Dobmann, G., On the mechanism of nondestructive evaluation of cementite content in steels using a combination of magnetic Barkhausen noise and magnetic force microscopy techniques, J. Magn. Magn. Mater., 2014, vol. 354, pp. 248–256.

    Article  CAS  Google Scholar 

  15. Donald, J.H., Fundamentals of Eddy Current Testing, Am. Soc. Nondestr. Test., 1990.

  16. Khan, S., Ali, F., Khan, A.N., and Iqbal, M., Pearlite determination in plain carbon steel by eddy current method, J. Mater. Process. Technol., 2008, vol. 200, nos. 1–3, pp. 316–318.

  17. Konoplyuk, S., Estimation of pearlite fraction in ductile cast irons by eddy current method, NDT&E Int., 2010, vol. 43, no. 4, pp. 360–364.

    Article  CAS  Google Scholar 

  18. Kashefi, M., Kahrobaee, S., and Nateq, M.H., On the relationship of magnetic response to microstructure in cast iron and steel parts, J. Mater. Eng. Perform., 2012, vol. 21, no. 7, pp. 1520–1525.

    Article  CAS  Google Scholar 

  19. Mansoor, M. and Ejaz, N., Prediction of in-service microstructural degradation of A106 steel using eddy current technique, Mater. Charact., 2009, vol. 60, no. 12, pp. 1591–1596.

    Article  CAS  Google Scholar 

  20. Mercier, D., Lesage, J., Decoopman, X., and Chicot, D., Eddy currents and hardness testing for evaluation of steel decarburizing, NDT&E Int., 2006, vol. 39, no. 8, pp. 652–660.

    Article  CAS  Google Scholar 

  21. Hao, X., Yin, W., Strangwood, M., Peyton, A., Morris, P., and Davis, C., Off-line measurement of decarburization of steels using a multifrequency electromagnetic sensor, Scripta Mater., 2008, vol. 58, no. 11, pp. 1033–1036.

    Article  CAS  Google Scholar 

  22. Kahrobaee, S., Kashefi, M., and Alam, A.S., Magnetic NDT technology for characterization of decarburizing depth, Surf. Coat. Technol., 2011, vol. 205, no. 16, pp. 4083–4088.

    Article  CAS  Google Scholar 

  23. Kashefi, M. and Kahrobaee, S., Dual-frequency approach to assess surface hardened layer using NDE technology, J. Mater. Eng. Perform., 2013, vol. 22, no. 4, pp. 1108–1112.

    Article  CAS  Google Scholar 

  24. Kahrobaee, S. and Kashefi, M., Hardness profile plotting using multi-frequency multi-output electromagnetic sensor, NDT&E Int., 2011, vol. 44, no. 4, pp. 335–338.

    Article  CAS  Google Scholar 

  25. Amiri, M.S. and Kashefi, M., Application of eddy current nondestructive method for determination of surface carbon content in carburized steels, NDT&E Int., 2009, vol. 42, no. 7, pp. 618–621.

    Article  Google Scholar 

  26. Rajkumar, K., Rao, B., Sasi, B., Kumar, A., Jayakumar, T., Raj, B., and Ray, K., Characterization of aging behaviour in M250 grade maraging steel using eddy current non-destructive methodology, Mater. Sci. Eng. A, 2007, vol. 464, nos. 1–2, pp. 233–240.

  27. Kahrobaee, S. and Kashefi, M., Microstructural characterization of quenched AISI D2 tool steel using magnetic/electromagnetic nondestructive techniques, IEEE Trans. Magn., 2015, vol. 51, no. 9, pp. 1–7.

    Article  CAS  Google Scholar 

  28. Kahrobaee, S. and Kashefi, M., Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel, J. Magn. Magn. Mater., 2015, vol. 382, pp. 359–365.

    Article  CAS  Google Scholar 

  29. Ghanei, S., Kashefi, M., and Mazinani, M., Eddy current nondestructive evaluation of dual phase steel, Mater. Des., 2013, vol. 50, pp. 491–496.

    Article  CAS  Google Scholar 

  30. Ontman, A.Y. and Shiflet, G., Thermodynamic mapping of austenite decomposition’s approach toward equilibrium in Fe–C–Mn at 700 C, Acta Mater., 2015, vol. 89, pp. 98–108.

    Article  CAS  Google Scholar 

  31. Dierkes, H. and Dronskowski, R., High-resolution powder neutron diffraction on Mn3C, Z. Anorg. Allg. Chem., 2014, vol. 640, no. 15, pp. 3148–3152.

    Article  CAS  Google Scholar 

  32. Shull, P.J., Nondestructive Evaluation: Theory, Techniques, and Applications, CRC Press, 2016.

    Google Scholar 

  33. Sahebalam, A., Kashefi, M., and Kahrobaee, S., Comparative study of eddy current and Barkhausen noise methods in microstructural assessment of heat treated steel parts, Nondestr. Test. Eval., 2014, vol. 29, no. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  34. Kashefi, M., Torbati, and Kahrobaee, S., On the application of non-destructive eddy current method for quality control of heat treated parts, in 18th Congr. IFHTSE-Int. Fed. Heat Treat. Surf. Eng., 2010.

  35. Rumiche, F., Indacochea, J., and Wang, M., Assessment of the effect of microstructure on the magnetic behavior of structural carbon steels using an electromagnetic sensor, J. Mater. Eng. Perform., 2008, vol. 17, no. 4, pp. 586–593.

    Article  CAS  Google Scholar 

  36. Batista, L., Rabe, U., and Hirsekorn, S., Magnetic micro-and nanostructures of unalloyed steels: domain wall interactions with cementite precipitates observed by MFM, NDT&E Int., 2013, vol. 57, pp. 58–68.

    Article  CAS  Google Scholar 

  37. Amiri, M.S. and Kashefi, M., Investigation of variables affecting impedance plane in eddy current testing of carburized steels, J. Mater. Eng. Perform., 2011, vol. 20, no. 3, pp. 476–480.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeed Kahrobaee or Ehsan Jahantigh Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahrobaee, S., Jahantigh Fard, E. Characterization of Hadfield Steels Subjected to Various Heat-Treating Processes by Nondestructive Eddy Current Method. Russ J Nondestruct Test 56, 151–160 (2020). https://doi.org/10.1134/S1061830920020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920020059

Keywords:

Navigation