Skip to main content
Log in

Dispersion Equation for Longitudinal Waves in a Layered Medium with Inhomogeneous Boundary Conditions in Different Propagation Directions

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We study the propagation of longitudinal waves in a layered medium with inhomogeneous boundary conditions for two versions of wave propagation geometry—parallel and perpendicular to structure layers. The dispersion equations for a longitudinal wave are derived for the considered cases of propagation. The dispersion equations are solved for the wavenumber to determine dependences of effective longitudinal wave velocities on relative layer thickness and material parameters. The resulting dependences are used in the problems of determining the physical and mechanical characteristics of the medium based on acoustic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abbakumov, K.E. and Vagin, A.V., Wave processes in a finely layered medium, Izv. S.-Peterburg Fos. Elektrotekh. Univ “LETI”, 2018, no. 8, pp. 87–91.

  2. Rytov, S.M., Acoustic properties of a finely layered medium, Akust. Zh., 1956, vol. 2, no. 1, pp. 71–83.

    Google Scholar 

  3. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.

  4. Jose, M., Carcione anisotropic Q and velocity dispersion of finely layered media, Geophys. Prospect., 1992, vol. 40, pp. 761–783.

    Article  Google Scholar 

  5. Luk’yashko, O.A. and Saraikin, V.A., Transient one-dimensional wave processes in a layered medium, J. Min. Sci., 2007, vol. 43, pp. 145–158.

    Article  Google Scholar 

  6. Guz, A.N., Uprugie volny v telakh s nachal’nymi napryazheniyami (Elastic Waves in Bodies with Initial Stresses), Kiev: Naukova Dumka, 1986.

  7. Brun, M., Guenneau, S., Movchan, A.B., and Bigoni, D., Dynamics of structural interfaces: filtering and focusing effects for elastic waves, J. Mech. Phys. Solids., 2010, vol. 58, pp. 1212–1224.

    Article  Google Scholar 

  8. Panasyuk, O.N., Propagation of quasishear waves in prestressed materials with unbonded layers, Int. Appl. Mech., 2011, vol. 47, pp. 276–282.

    Article  Google Scholar 

  9. Christensen, R.M., Mechanics of Composite Materials, New York: Wiley, 1979.

    Google Scholar 

  10. Guz, A.N. and Rushitsky, J.J., Short Introduction to Mechanics of Nanocomposites, Rosemead: Sci. Acad. Publ., 2013.

  11. Panasyuk, O.N., Analysis of the influence of boundary conditions on the propagation of waves in layered composite materials, Prikl. Mekh., 2014, no. 4, pp. 52–58.

  12. Akbarov, S.D., Guliev, M.S., and Kepceler, T., Propagation of axisymmetric waves in an initially twisted circular compound bimaterial cylinder with a soft inner and a stiff outer constituents, Mech. Compos. Mater., 2011, vol. 46, pp. 627–638.

    Article  Google Scholar 

  13. Khlybov, A.A., Studying the effect of microscopic medium inhomogeneity on the propagation of surface waves, Russ. J. Nondestr. Test., 2018, vol. 54, no. 6, pp. 400–409.

    Article  Google Scholar 

  14. Petrashen’, G.I., Rasprostranenie voln v anizotropnykh uprugikh sredakh (Wave Propagation in Anisotropic Elastic Media), Leningrad: Nauka, 1980.

  15. Chaban, I.A., Calculation of effective parameters of microinhomogeneous media by the method of self-consistent field, Akust. Zh., 1965, no. 1, pp. 102–109.

  16. Chaban, I.A., Method of self-consistent field as applied to the calculation of the effective parameters of microinhomogeneous media, Akust. Zh., 1964, no. 3, pp. 351–358.

  17. Abbakumov, K.E., Kirikov, A.V., and L’vov, R.N., Refraction of elastic waves at a plane interface with impaired adhesion of solid media, Izv. S.-Peterburg Gos Elektrotekh. Univ. “LETI”, 2003, no. 1, pp. 10–17.

  18. Evel’son, R.L., A fine-layered medium of finite-thickness in an electromagnetic field, J. Commun. Technol. Electr., 2015, vol. 60, no. 6, pp. 552–559.

    Article  Google Scholar 

  19. Vavakin, A.S. and Salganik, R.L., Effective elastic characteristics of bodies with isolated cracks, cavities, and rigid inhomogeneities, Solid Mech., 1978, no. 2, pp. 95–107.

  20. Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh sred (Theory of Elasticity of Microinhomogeneous Media), Moscow: Nauka, 1977.

  21. Floquet, G., Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. Ec. Norm. Super., 1983, vol. 12, pp. 47–88.

    Article  Google Scholar 

  22. Kupradze, V.D. and Sobolev, S.L., Elastic waves at the interfaces between two media, Tr. Seism. Inst. Akad. Nauk SSSR, 1930, no. 10, pp. 58–67.

  23. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Basics for the Use of Ultrasonic Rayleigh and Lamb Waves in Technology), Moscow: Nauka, 1996.

  24. Viktorov, I.A., Zvukovye poverkhnostnye volny v tverdykh telakh (Sound Surface Waves in Solids), Moscow: Nauka, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. E. Abbakumov or A. V. Vagin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbakumov, K.E., Vagin, A.V. Dispersion Equation for Longitudinal Waves in a Layered Medium with Inhomogeneous Boundary Conditions in Different Propagation Directions. Russ J Nondestruct Test 56, 20–27 (2020). https://doi.org/10.1134/S1061830920010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920010027

Keywords:

Navigation