Skip to main content
Log in

E-Beam Lithography Simulation Techniques

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

This review describes general approaches for the simulation exposure and development stages of e-beam lithography (EBL). The general models of elastic and inelastic electron interactions with matter, which are used for the simulation of the EBL exposure stage, are presented. The empirical and theoretical models of the resist’s dissolution in wet developers are provided for the simulation of the EBL profile development stage. Also, the kinetic transport and Monte-Carlo simulation algorithms are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Chang, T.H.P., Proximity effect in electron-beam lithography, J. Vac. Sci. Technol., 1975, vol. 12, no. 6, pp. 1271–1275.

    Article  Google Scholar 

  2. Umbach, C.P. and Broers, A.N., Proximity effect in electron beam patterned X-ray masks, Appl. Phys. Lett., 1990, vol. 56, no. 16, pp. 1594–1596.

    Article  Google Scholar 

  3. Soe, E., Choi, B.K., and Kim, O., Determination of proximity effect parameters and the shape bias parameter in electron beam lithography, Microelectron. Eng., 2000, vol. 53, no. 1, pp. 305–308.

    Article  Google Scholar 

  4. Dapor, M., Electron-Beam Interactions with Solids, Berlin, Heidelberg, New York: Springer, 2003.

    Book  Google Scholar 

  5. Sheikin, E.G., Model differential cross section of elastic scattering of electrons by atoms in the Monte Carlo simulation of the passage of electrons in a substance, Tech. Phys., 2010, vol. 55, no. 1, pp. 1–9.

    Article  Google Scholar 

  6. Adesida, I., Shimizu, R., and Everhart, T.E., A study of electron penetration in solids using a direct Monte Carlo approach, J. Appl. Phys., 1980, vol. 51, no. 11, pp. 5962–5969.

    Article  Google Scholar 

  7. Marrian, C.R.K., Modeling of electron elastic and inelastic scattering, J. Vac. Sci. Technol., B, 1996, vol. 14, no. 6, p. 3864.

    Article  Google Scholar 

  8. Schmoranzer, H. and Reisser, M., Spatial energy deposition distribution by a keV-electron beam in resist layers for electron-beam lithography, Nucl. Instrum. Methods Phys. Res.,Sect. B, 1995, vol. 105, nos. 1–4, pp. 35–41.

    Google Scholar 

  9. Biewer, T. and Rez, P., Energy deposition in thin films calculated using electron transport theory, J. Appl. Phys., 1994, vol. 76, no. 11, pp. 7636–7638.

    Article  Google Scholar 

  10. Dapor, M., Elastic scattering calculations for electrons and positrons in solid targets, J. Appl. Phys., 1996, vol. 79, no. 11, pp. 8406–8411.

    Article  Google Scholar 

  11. Mott, N.F. and Massey, H.S.W., Theory of Atomic Collisions, Berlin, Heidelberg: Springer, 1956.

    MATH  Google Scholar 

  12. Czyzewski, Z., et al., Calculations of Mott scattering cross section, J. Appl. Phys., 1990, vol. 68, no. 7, pp. 3066–3072.

    Article  Google Scholar 

  13. Gregory, D. and Fink, M., Theoretical electron scattering amplitudes and spin polarizations, At. Data Nucl. Data Tables, 2007, vol. 14, no. 1, pp. 39–87.

    Article  Google Scholar 

  14. Reimer, L. and Lödding, B., Calculation and tabulation of Mott cross-sections for large-angle electron scattering, Scanning, 1984, vol. 6, no. 3, pp. 128–151.

    Article  Google Scholar 

  15. Riley, M.E., Maccallum, C.J., and Biggs, F., Theoretical electron-atom elastic scattering cross sections, At. Data Nucl. Data Tables, 1975, vol. 15, no. 5, pp. 443–476.

    Article  Google Scholar 

  16. Salvat, F., Jablonski, A., and Powell, C.J., Elsepa– Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules, Comput. Phys. Commun., 2005, vol. 165, pp. 157–190.

    Article  Google Scholar 

  17. Reimer, L. and Stelter, D., FORTRAN 77 Monte-Carlo program for minicomputers using Mott cross-sections, Scanning, 1986, vol. 8, no. 6, pp. 265–277.

    Article  Google Scholar 

  18. Kuhr, J.C. and Fitting, H.J., Monte-Carlo simulation of low energy electron scattering in solids, Phys. Status Solidi Appl. Res., 1999, vol. 172, no. 2, pp. 433–449.

    Article  Google Scholar 

  19. Ding, Z.-J. and Shimizu, R., A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production, Scanning, 2006, vol. 18, no. 2, pp. 92–113.

    Article  Google Scholar 

  20. Ivin, V.V. et al., Modeling and simulation issues in Monte Carlo calculation of electron interaction with solid targets, Microelectron. Eng., 2003, vol. 69, nos. 2–4, pp. 594–605.

    Article  Google Scholar 

  21. Kieft, E. and Bosch, E., Refinement of Monte Carlo simulations of electron-specimen interaction in low-Vtage SEM, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 21.

  22. Iga, I. et al., Elastic differential cross section measurements for electron scattering from Ar and O2 in the intermediate-energy range, J. Phys. B, 1987, vol. 20, no. 5, pp. 1095–1104.

    Article  Google Scholar 

  23. Holtkamp, G. et al., Absolute differential cross sections for elastic electron scattering from mercury, J. Phys. B, 1987, vol. 20, no. 17, pp. 4543–4569.

    Article  Google Scholar 

  24. Shimizu, R. and Ze-Jun, D., Monte Carlo modelling of electron-solid interactions, Rep. Prog. Phys., 1992, vol. 55, no. 4, pp. 487–531.

    Article  Google Scholar 

  25. Bethe, H., Theory of the passage of fast corpuscular rays through matter, Ann. Phys. (N.Y.), 1930, vol. 5, no. 5, pp. 77–154.

    Google Scholar 

  26. Seltzer, S.M. and Berger, M.J., Evaluation of the collision stopping power of elements and compounds for electrons and positrons, Int. J. Appl. Radiat. Isotopes, 1982, vol. 33, no. 11, pp. 1189–1218.

    Article  Google Scholar 

  27. Akkerman, A.F., Modelirovanie traektorii zaryazhennykh chastits v veshchestve (Simulation of the Charged Particle Trajectories in Matter), Moscow: Energoatomizdat, 1991.

  28. Tan, Z. et al., Electron stopping power and mean free path in organic compounds over the energy range of 20–10 000 eV, Nucl. Instrum. Methods Phys. Res.,Sect. B, 2004, vol. 222, nos. 1–2, pp. 27–43.

    Google Scholar 

  29. Rao-Sahib, T.S. and Wittry, D.B., X-ray continuum from thick elemental targets for 10–50 keV electrons, J. Appl. Phys., 1974, vol. 45, no. 11, pp. 5060–5068.

    Article  Google Scholar 

  30. Joy, D.C., A model for calculating secondary and backscattered electron yields, J. Microsc., 1987, vol. 147, no. 1, pp. 51–64.

    Article  Google Scholar 

  31. Lindhard, J., Stopping power of electron gas, K. Dan. Vidensk. Selks. Mat. Phys. Medd., 1964, vol. 34, no. 4.

  32. Sorini, A.P. et al., Ab initio calculations of electron inelastic mean free paths and stopping powers, Phys. Rev. B, 2006, vol. 74, no. 16, pp. 1–17.

    Article  Google Scholar 

  33. Ashley, J.C., Tung, C.J., and Ritchie, R.H., Electron inelastic mean free paths and energy losses in solids. I. Aluminum metal, Surf. Sci., 1979, vol. 81, no. 2, pp. 409–426.

    Article  Google Scholar 

  34. Tung, C.J., Ashley, J.C., and Ritchie, R.H., Electron inelastic mean free paths and energy losses in solids. II. Electron gas statistical model, Surf. Sci., 1979, vol. 81, no. 2, pp. 427–439.

    Article  Google Scholar 

  35. Romanyuk, O. et al., Dielectric response functions of the (0001), (1013) GaN single crystalline and disordered surfaces studied by reflection electron energy loss spectroscopy, J. Appl. Phys., 2011, vol. 110, no. 4, p. 043507.

    Article  Google Scholar 

  36. Tahir, D. and Tougaard, S., Electronic and optical properties of selected polymers studied by reflection electron energy loss spectroscopy, J. Appl. Phys., 2012, vol. 111, no. 5.

  37. Tahir, D. et al., Electronic and optical properties of La-aluminate dielectric thin films on Si (100), Surf. Interface Anal., 2010, vol. 42, nos. 10–11, pp. 1566–1569.

    Article  Google Scholar 

  38. Tahir, D. et al., Electronic and optical properties of Al2O3/SiO2 thin films grown on Si substrate, J. Phys. D: Appl. Phys., 2010, vol. 43, no. 25.

  39. Ashley, J.C., Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data, J. Electron Spectrosc. Relat. Phenom., 1988, vol. 46, no. 1, pp. 199–214.

    Article  Google Scholar 

  40. Ashley, J.C., Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter, J. Electron Spectrosc. Relat. Phenom., 1990, vol. 50, no. 2, pp. 323–334.

    Article  Google Scholar 

  41. Werner, W.S.M., Glantschnig, K., and Ambrosch-Draxl, C., Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys. Chem. Ref. Data, 2009, vol. 38, no. 4, pp. 1013–1092.

    Article  Google Scholar 

  42. Tanuma, S., Powell, C.J., and Penn, D.R., Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range, Surf. Interface Anal., 2011, vol. 43, no. 3, pp. 689–713.

    Article  Google Scholar 

  43. Dapor, M. and Miotello, A., Backscattering of electrons from selected oxides: MgO, SiO2, and Al2O3, Eur. Phys. J. Appl. Phys., 1999, vol. 5, no. 2, pp. 143–148.

    Article  Google Scholar 

  44. Samoto, N. and Shimizu, R., Theoretical study of the ultimate resolution in electron beam lithography by Monte Carlo simulation, including secondary electron generation: energy dissipation profile in polymethylmethacrylate, J. Appl. Phys., 1983, vol. 54, no. 7, pp. 3855–3859.

    Article  Google Scholar 

  45. Pei, X., The Monte Carlo simulation of secondary electrons excitation in the resist PMMA, Appl. Phys. Res., 2014, vol. 6, no. 3, pp. 1–7.

    Article  Google Scholar 

  46. Murata, K., Kyser, D.F., and Ting, C.H., Monte Carlo simulation of fast secondary electron production in electron beam resists, J. Appl. Phys., 1981, vol. 52, no. 7, pp. 4396–4405.

    Article  Google Scholar 

  47. Mott, N.F., The collision between two electrons, Proc. R. Soc. London, Ser. A, 1930, vol. 126, no. 801, pp. 259–267.

    Article  MATH  Google Scholar 

  48. Moller, C., Uber den Stos zweier Teilchen unter Berucksichtigung der Retardation der Krafte, Zeitschr. Phys., 1931, vol. 70, nos. 11–12, pp. 786–795.

    Article  MATH  Google Scholar 

  49. Shimizu, R. et al., A Monte Carlo approach to the direct simulation of electron penetration in solids, J. Phys. D: Appl. Phys., 1976, vol. 9, no. 1, pp. 101–113.

    Article  Google Scholar 

  50. Ichimura, S. and Shimizu, R., Backscattering correction for quantitative auger analysis. I. Monte Carlo calculations of backscattering factors for standard materials, Surf. Sci., 1981, vol. 112, no. 3, pp. 386–408.

    Article  Google Scholar 

  51. Gryziński, M., Classical theory of atomic collisions. I. Theory of inelastic collisions, Phys. Rev., 1965, vol. 138, no. 2A.

  52. Gryziński, M., Classical theory of atomic collisions. II. Low energy scattering, J. Chem. Phys., 1975, vol. 62, no. 7, pp. 2620–2628.

    Article  Google Scholar 

  53. Shimizu, R. and Everhart, T.E., A semiempirical stopping-power formula for use in microprobe analysis, Appl. Phys. Lett., 1978, vol. 33, no. 8, pp. 784–786.

    Article  Google Scholar 

  54. Perkins, S.T., Cullen, D.E., and Seltzer, S.M., Tables and Graphs of Electron-Interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1–100. United States. doi: 10.2172/5691165. https://www.osti.gov/servlets/purl/5691165

  55. Seltzer, S.M., An overview of ETRAN Monte Carlo methods, in Proceedings of the International School on Monte Carlo Transport of Electrons and Photons,2012, pp. 153–181.

  56. Seltzer, S.M., Electron-photon Monte Carlo calculations: the ETRANn code, Int. J. Radiat. Appl. Instrum. 1991, vol. 42, no. 10, pp. 917–941.

  57. Glezos, N., Raptis, I., and Hatzakis, M., LITHOS: a fast electron beam lithography simulator, Microelectron. Eng., 1995, vol. 26, nos. 3–4, pp. 131–140.

    Article  Google Scholar 

  58. Rosenbusch, A., Glezos, N., and Raptis, L., SELID: a new 3D simulator for EBeam lithography, Proc. SPIE, 1996, vol. 2884, pp. 435–441.

    Article  Google Scholar 

  59. Stepanova, M. et al., Simulation of electron beam lithography of nanostructures, J. Vac. Sci. Technol., B, 2010, vol. 28, no. 6, pp. C6C48–C6C57.

  60. Glezos, N., Application of a new analytical technique of electron distribution calculations to the profile simulation of a high sensitivity negative electron-beam resist, J. Vac. Sci. Technol., B, 1992, vol. 10, no. 6, p. 2606.

    Article  Google Scholar 

  61. Bethe, H.A., Rose, M.E., and Smith, L.P., The multiple scattering of electrons, Proc. Am. Philos. Soc., 1938, vol. 78, no. 4, pp. 573–585.

    MATH  Google Scholar 

  62. Sommerfeld, A., Lectures on Theoretical Physics, New York: Academic, 1950.

    MATH  Google Scholar 

  63. Lewis, H.W., Multiple scattering in an infinite medium, Phys. Rev., 1950, vol. 78, no. 5, pp. 526–529.

    Article  MathSciNet  MATH  Google Scholar 

  64. Glezos, N. and Raptis, I., A fast electron beam lithography simulator based on the Boltzmann transport equation, IEEE Trans. Comput. Des. Integr. Circuits Syst., 1996, vol. 15, no. 1, pp. 92–102.

    Article  Google Scholar 

  65. Han, G. et al., Comprehensive model of electron energy deposition, J. Vac. Sci. Technol., B, 2002, vol. 20, no. 6, p. 2666.

    Article  Google Scholar 

  66. Greeneich, J.S., Developer characteristics of poly-(methyl methacrylate) electron resist, J. Electrochem. Soc., 1975, vol. 122, no. 7, p. 970.

    Article  Google Scholar 

  67. Everhart, T.E. and Hoff, P.H., Determination of kiloVt electron energy dissipation vs penetration distance in solid materials, J. Appl. Phys., 1971, vol. 42, no. 13, pp. 5837–5846.

    Article  Google Scholar 

  68. Ku, H.Y. and Scala, L.C., Polymeric electron beam resists, J. Electrochem. Soc., 1969, vol. 116, no. 7, p. 980.

    Article  Google Scholar 

  69. Greeneich, J.S., Time eVution of developed contours in poly-(methyl methacrylate) electron resist, J. Appl. Phys., 1974, vol. 45, no. 12, pp. 5264–5268.

    Article  Google Scholar 

  70. Chapiro, A., Radiation Chemistry of Polymeric Systems, New York: Wiley, 1962.

    Google Scholar 

  71. Kyser, D.F. and Viswanathan, N.S., Monte Carlo simulation of spatially distributed beams in electron-beam lithography, J. Vac. Sci. Technol., 2002, vol. 12, no. 6, pp. 1305–1308.

    Article  Google Scholar 

  72. Aktary, M., Stepanova, M., and Dew, S.K., Simulation of the spatial distribution and molecular weight of polymethylmethacrylate fragments in electron beam lithography exposures, J. Vac. Sci. Technol., B, 2006, vol. 24, no. 2, p. 768.

    Article  Google Scholar 

  73. Venkattraman, A. and Alexeenko, A.A., Direct simulation Monte Carlo modeling of e-beam metal deposition, J. Vac. Sci. Technol., A, 2010, vol. 28, no. 4, pp. 916–924.

    Article  Google Scholar 

  74. Han, G., Khan, M., and Cerrina, F., Stochastic modeling of high energy lithographies, J. Vac. Sci. Technol., B, 2003, vol. 21, no. 6, p. 3166.

    Article  Google Scholar 

  75. Rogozhin, A.E. et al., Simulation of dry e-beam etching of resist and experimental evidence, in Proceedings of the International Conference on Micro- and Nano-Electronics,2018, Lukichev, V.F. and Rudenko, K.V., Eds., Philadelphia: SPIE, 2019, p. 96.

  76. Mohammad, M.A. et al., Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate, J. Vac. Sci. Technol., B, 2010, vol. 28, no. 1, pp. L1–L4.

    Article  Google Scholar 

  77. Miller-Chou, B.A. and Koenig, J.L., A review of polymer dissolution, i 2003, vol. 28, no. 8, pp. 1223–1270.

  78. De Gennes, P.G., Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys., 1971, vol. 55, no. 2, pp. 572–579.

    Article  Google Scholar 

  79. Harmandaris, V.A. et al., Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments, Macromolecules, 2003, vol. 36, no. 4, pp. 1376–1387.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-37-00472 and partially by the Ministry of Science and Higher Education of Russia, program no. 0066-2019-0004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Rogozhin or F. A. Sidorov.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhin, A.E., Sidorov, F.A. E-Beam Lithography Simulation Techniques. Russ Microelectron 49, 108–122 (2020). https://doi.org/10.1134/S1063739720010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739720010096

Navigation