Skip to main content
Log in

Heptalene Synthesis by Addition of Aryl Acetylenes to Azulenes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Aryl acetylenes bearing electron-withdrawing groups have been found that can add to azulenes and yield 1,2-substituted heptalenes. Theoretical studies of the reaction mechanism helped to design the candidate molecules that have then been tested in the synthetic work. New heptalenes are obtained by reacting methyl (4-nitrophenyl)propiolate with either 4,6,8-trimethylazulene or guaiazulene, as well as 3-(4-nitrophenyl)-2-propyn-1-ol with guaiazulene. This opens a new synthetic route to 1-aryl-substituted heptalenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hafner, K., Diehl, H., and Süss, H.U., Angew. Chem., Int. Ed. Engl., 1976, vol. 15, p. 104. https://doi.org/10.1002/anie.197601041

    Article  Google Scholar 

  2. Paquette, L.A., Isr. J. Chem., 1980, vol. 20, p. 233. https://doi.org/10.1002/ijch.198000077

    Article  CAS  Google Scholar 

  3. Bernhard, W., Brügger, P., Daly, J.J., Schönholzer, P., Weber, R.H., and Hansen, H.-J., Helv. Chim. Acta, 1985, vol. 68, p. 415. https://doi.org/10.1002/hlca.19850680215

    Article  CAS  Google Scholar 

  4. Abou-Hadeed, K. and Hansen, H.-J., Helv. Chim. Acta, 1997, vol. 80, p. 2535. https://doi.org/10.1002/hlca.19970800821

    Article  CAS  Google Scholar 

  5. Houar, S.E. and Hansen, H.-J., Helv. Chim. Acta, 1997, vol. 80, p. 253. https://doi.org/10.1002/hlca.19970800123

    Article  Google Scholar 

  6. Ochertyanova, E. and Hansen, H.-J., Helv. Chim. Acta, 2002, vol. 85, p. 1128. https://doi.org/10.1002/1522-2675(200204)85:4<1128::AID-HLCA1128>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  7. Landmesser, T., Linden, A., and Hansen, H.-J., Helv. Chim. Acta, 2013, vol. 96, p. 1851. https://doi.org/10.1002/hlca.201300138

    Article  CAS  Google Scholar 

  8. Hafner, K., Lindner, H.J., and Ude, W., Angew. Chem., Int. Ed. Engl., 1979, vol. 18, p. 161. https://doi.org/10.1002/anie.197901611

    Article  Google Scholar 

  9. Hafner, K., Lindner, H.J., and Ude, W., Angew. Chem., Int. Ed. Engl., 1979, vol. 18, p. 162. https://doi.org/10.1002/anie.197901621

    Article  Google Scholar 

  10. Chen, Y., Kunz, R.W., Uebelhart, P., Weber, R.H., and Hansen, H.-J., Helv. Chim. Acta, 1992, vol. 75, p. 2447. https://doi.org/10.1002/hlca.19920750803

    Article  CAS  Google Scholar 

  11. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  12. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151. https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  13. Møller, C. and Plesset, M.S., Phys. Rev., 1934, vol. 46, p. 618. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  14. Laikov, D.N., Theor. Chem. Acc., 2019, vol. 138, p. 40. https://doi.org/10.1007/s00214-019-2432-3

    Article  CAS  Google Scholar 

  15. Laikov, D.N., J. Chem. Phys., 2011, vol. 135, article no. 134120. https://doi.org/10.1063/1.3646498

    Article  PubMed  Google Scholar 

  16. Briling, K.R., J. Chem. Phys., 2017, vol. 147, article no. 157101. https://doi.org/10.1063/1.5000525

    Article  PubMed  Google Scholar 

  17. Gonzalez, C. and Schlegel, H.B., J. Chem. Phys., 1989, vol. 90, p. 2154. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  18. Diels, O. and Alder, K., Liebigs Ann. Chem., 1928, vol. 460, p. 98. https://doi.org/10.1002/jlac.19284600106

    Article  CAS  Google Scholar 

  19. Hafner, K., Knaup, G.L., and Lindner, H.J., Bull. Chem. Soc. Jpn., 1988, vol. 61, p. 155. https://doi.org/10.1246/bcsj.61.155

    Article  CAS  Google Scholar 

  20. Schuchmann, P. and Hafner, K., Tetrahedron Lett., 1995, vol. 36, p. 2603. https://doi.org/10.1016/0040-4039(95)00350-L

    Article  CAS  Google Scholar 

  21. Klärner, F.-G., Dogan, B., Roth, W.R., and Hafner, K., Angew. Chem., Int. Ed. Engl., 1982, vol. 21, p. 708. https://doi.org/10.1002/anie.198207081

    Article  Google Scholar 

  22. Fallahpour, R.A. and Hansen, H.-J., High Pressure Res., 1993, vol. 11, p. 125. https://doi.org/10.1080/08957959208201698

    Article  Google Scholar 

  23. Sonogashira, K., J. Organomet. Chem., 2002, vol. 653, p. 46. https://doi.org/10.1016/S0022-328X(02)01158-0

    Article  CAS  Google Scholar 

  24. Bumagin, N.A., Ponomaryov, A.B., and Beletskaya, I.P., Synthesis, 1984, vol. 1984, p. 728. https://doi.org/10.1055/s-1984-30947

    Article  Google Scholar 

  25. Eckert, T. and Ipaktschi, J., Synth. Commun., 1998, vol. 28, p. 327. https://doi.org/10.1080/00397919808005726

    Article  CAS  Google Scholar 

  26. Hafner, K. and Kaiser, H., Org. Synth., 1964, vol. 44, p. 94. https://doi.org/10.15227/orgsyn.044.0094

    Article  CAS  Google Scholar 

  27. London, F., J. Phys. Radium, 1937, vol. 8, p. 397. https://doi.org/10.1051/jphysrad:01937008010039700

    Article  CAS  Google Scholar 

  28. Zorin, V.E., GSim — Visualisation and Processing Tool for NMR Experiments and Simulations. http://gsim.sourceforge.net

  29. Balaban, A.T. and Boulton, A.J., Org. Synth., 1969, vol. 49, p. 121. https://doi.org/10.15227/orgsyn.049.0121

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Y.K. Grishin, Y.F. Oprunenko, V.A. Chertkov, V.A. Roznyatovsky, and V.N. Torocheshnikov have measured the NMR spectra of the synthesized compounds.

Author information

Authors and Affiliations

Authors

Contributions

The authors have made equal contributions to both the theoretical and the experimental work.

Corresponding author

Correspondence to D. N. Laikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briling, K.R., Laikov, D.N. Heptalene Synthesis by Addition of Aryl Acetylenes to Azulenes. Russ J Org Chem 56, 569–575 (2020). https://doi.org/10.1134/S1070428020040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020040028

Keywords:

Navigation