Skip to main content
Log in

Complex Approach to Evaluating Genotoxicity from Occupational Factors in Coal Mining Industry

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The level of cytogenetic damage was analyzed in coal miners (N = 116) and the control sample (N = 169) using an assay for scoring of chromosomal aberrations (CAs) and the DNA comet assay in lymphocytes, as well as the micronucleus test in buccal epithelial cells (MN in BEC). The group of coal miners was characterized by a statistically significantly increase in the main index values of the used test system, compared to the control group. Specifically, the level of chromosomal aberrations in the miner and control groups was 4.69 ± 0.28 and 2.13 ± 0.10%; the proportion of DNA in the comet tail was 4.33 ± 0.38 and 2.16 ± 0.24%; and the micronucleus level was 1.44 ± 0.21 and 0.23 ± 0.12‰, respectively (Р < 0.05). Moreover, in the sample of coal miners, a considerable increase in the levels of additional test indices was observed. For CAs, these parameters included the frequency of single fragments, chromatid-type aberrations, paired fragments, dicentrics without fragments, chromosome exchanges, and chromosome-type aberrations; for the DNA comet assay, these were the comet tail moment and Olive tail moment; for the MN in BEC, the frequencies of binucleated cells, cells with notched nuclei, geminate nuclei, karyorhexis, and apoptotic bodies. Ranking of the results according to major cytogenetic abnormalities made it possible to establish that, in the group of miners, the proportion of individuals with the index values above the background was 68.97% for CAs, 52.13% for the DNA comet assay, and 36.08% for the MN in BEC. The proportion of individuals with cytogenetic damage higher than the background simultaneously in three test systems was 20% of the total sample of miners. To assess the mutagenic effects from occupational factors of coal mining enterprises, it seems reasonable to use a complex of test systems (CA test, DNA comet assay, and MN in BEC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Armutcu, F., Gun, B.D., Altin, R., and Gurel, A., Examination of lung toxicity, oxidant/antioxidant status and effect of erdosteine in rats kept in coal mine ambience, Environ. Toxicol. Pharmacol., 2007, vol. 24, no. 2, pp. 106—113. https://doi.org/10.1016/j.etap.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  2. Leon-Mejia, G., Silva, L.F., Civeira, M.S., et al., Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells, Environ. Sci. Pollut. Res. Int., 2016, vol. 23, no. 23, pp. 24019—24031. https://doi.org/10.1007/s11356-016-7623-z

    Article  CAS  PubMed  Google Scholar 

  3. Collins, A.R., Oscoz, A.A., Brunborg, G., et al., The comet assay: topical issues, Mutagenesis. 2008, vol. 23, pp. 143—151. https://doi.org/10.1093/mutage/gem051

    Article  CAS  PubMed  Google Scholar 

  4. Vinzents, P.S., Moller, P., Sorensen, M., et al., Personal exposure to ultrafine particles and oxidative DNA damage, Environ. Health Perspect. 2005, vol. 113, pp. 1485—1490. https://doi.org/10.1289/ehp.7562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonassi, S., Znaor, A., Norppa, H., and Hagmar, L., Chromosomal aberrations and risk of cancer in humans: an epidemiologic perspective, Cytogenet. Genome Res., 2004, vol. 104, nos. 1—4, pp. 376—382. https://doi.org/10.1159/000077519

    Article  CAS  PubMed  Google Scholar 

  6. Sycheva, L.P., Assessment of mutagenic effects of environmental factors using polyorganic micronucleus test, Vestn. Ross. Akad. Med. Nauk, 2006, no. 7, pp. 27—32.

  7. Matzenbacher, C.A., Garcia, A.L.H., Santos, M.S., et al., DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro, J. Hazard. Mater., 2017, vol. 324, pp. 781—788. https://doi.org/10.1016/j.jhazmat.2016.11.062

    Article  CAS  PubMed  Google Scholar 

  8. da Silva Júnior, F., Tavella, R., Fernandes, C., et al., Genotoxicity in Brazilian coal miners and its associated factors, Hum. Exp. Toxicol., 2018, vol. 37, no. 9, pp. 891—900. https://doi.org/10.1177/0960327117745692

    Article  CAS  PubMed  Google Scholar 

  9. Leon-Mejia, G., Espitia-Perez, L., Hoyos-Giraldo, L.S., et al., Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micro micronucleus test and the comet assay, Sci. Total Environ., 2011, vol. 409, no. 4, pp. 686—691.https://doi.org/10.1016/j.scitotenv.2010.10.049

    Article  Google Scholar 

  10. Donbak, L., Rencuzogullar, E., Yavuz, A., and Topaktas, M., The genotoxic risk of underground coal miners from Turkey, Mutat. Res., 2005, vol. 588, no. 2, pp. 82—87. https://doi.org/10.1016/j.mrgentox.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  11. Rohr, P., Kvitko, K., Silva, F.R., et al., Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal, Mutat. Res., 2013, vol. 758, nos. 1—2, pp. 23—28. https://doi.org/10.1016/j.mrgentox.2013.08.006

    Article  CAS  Google Scholar 

  12. Smerhovsky, Z., Landa, K., Rossner, P., et al., Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations, Mutat. Res., 2002, vol. 514, nos. 1—2, pp. 165—176.

    Article  CAS  Google Scholar 

  13. Santa Maria, S.R., Arana, M., and Ramirez, O., Chromosomal aberrations in peripheral lymphocytes from male native miners working in the Peruvian Andes, Genet. Mol. Biol., 2007, vol. 30, no. 4, pp. 1135—1138. https://doi.org/10.1590/S1415-47572007000600017

    Article  Google Scholar 

  14. Minina, V.I., Kulemin, Yu.E., Tolochko, T.A., et al., Genotoxic effects of the working environment on the Kuzbass miners, Med. Truda Prom. Ekol., 2015, no. 5, pp. 4—8.

  15. Volobaev, V.P., Larionov, A.V., Kalyuzhnaya, E.E., et al., Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects, Mutagenesis, 2018, vol. 33, no. 2, pp. 129—135. https://doi.org/10.1093/mutage/gex047

    Article  CAS  PubMed  Google Scholar 

  16. Sinitsky, M.Y., Minina, V.I., Gafarov, N.I., et al., Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes, Mutagenesis, 2016, vol. 31, no. 6, pp. 669—675. https://doi.org/10.1093/mutage/gew038

    Article  CAS  PubMed  Google Scholar 

  17. Rohr, P., Silva, J., Silva, F.R., et al., Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleuscytome assay, Environ. Mol. Mutagen., 2013, vol. 54, no. 1, pp. 65—71. https://doi.org/10.1002/em.21744

    Article  CAS  PubMed  Google Scholar 

  18. Leon-Mejia, G., Quintana, M., Debastiani, R., et al., Genetic damage in coal miners evaluated by buccal micronucleus cytome assay, Ecotoxicol. Environ. Saf., 2014, vol. 107, pp. 133—139. https://doi.org/10.1016/j.ecoenv.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  19. Hungerford, P.A., Leukocytes cultured from small inocula of whole blood and the preparation of metaphase chromosomes by treatment with hypotonic KCl, Stain Techn., 1965, vol. 40, pp. 333—338.

    Article  CAS  Google Scholar 

  20. Druzhinin, V.G., Quantitative characteristics of chromosome aberration frequency in the human population of a large Western Siberian industrial region, Russ. J. Genet., 2003, vol. 39, no. 10, pp. 1161—1167. https://doi.org/10.1023/A:1026179011781

    Article  CAS  Google Scholar 

  21. Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L., A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res., 1988, vol. 175, pp. 184—191.

    Article  CAS  Google Scholar 

  22. Konca, K., Lankoff, A., Banasik, A., et al., A cross platform public domain PC image analysis program for the comet assay, Mutat. Res., 2003, vol. 534, nos. 1—2, pp. 15—20.

    Article  CAS  Google Scholar 

  23. Thomas, P., Hollad, N., Bolognesi, C., et al., Buccal micronucleus cytome assay, Nat. Protoc., 2009, vol. 4, pp. 825—837.

    Article  CAS  Google Scholar 

  24. Sycheva, L.P., Biological significance, determination criteria and variation limits of the full range of karyological indicators in assessing human cytogenetic status, Med. Genet., 2007, no. 11, pp. 3—11.

  25. Batar, B., Guven, M., Baris, S., et al., DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia, Leuk. Res., 2009, vol. 33, pp. 759—763. https://doi.org/10.1016/j.leukres.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, J., Zhang, X., Yang, H., and Wang, W., Polymorphisms of DNA repair genes: ADPRT, XRCC1, and XPD and cancer risk in genetic epidemiology, Meth. Mol. Biol., 2009, vol. 471, pp. 305—333. https://doi.org/10.1007/978-1-59745-416-2_16

    Article  CAS  Google Scholar 

  27. Makhalin, A.V., Redkokasha, L.Yu., and Moroz, V.V., Cytogenetic changes in T-lymphocytes among miners, Obsh. Reanimatol., 2007, vol. 3, nos. 5—6, pp. 139—143. https://doi.org/10.15360/1813-9779-2007-6-139-143

    Article  Google Scholar 

  28. Meier, A.V., Tolochko, T.A., Litvin, A.V., et al., Karyological status of buccal epithelial cells of miners with occupational pulmonary pathologies, Gig. Sanit., 2018, vol. 97, no. 3, pp. 220—225.

    Article  Google Scholar 

  29. Kvitko, K., Bandinelli, E., Henriques, J.A.P., et al., Susceptibility to DNA damage in workers occupationally exposed to pesticides, to tannery chemicals and to coal dust during mining, Genet. Mol. Biol., 2012, vol. 35, no. 4, pp. 1060—1068.

    Article  CAS  Google Scholar 

  30. Cabarcas-Montalvo, M., Olivero-Verbel, J., and Corrales-Aldana, H., Genotoxic effects in blood cells of Mus musculus and Iguana iguana living near coal mining areas in Colombia, Sci. Total Environ., 2012, vol. 416, pp. 208—214. https://doi.org/10.1016/j.scitotenv.2011.11.080

    Article  CAS  PubMed  Google Scholar 

  31. Minina, V.I., Druzhinin, V.G., and Golovina, T.A., Dynamics of chromosomal aberrations level in residents of an industrial city in conditions of changing atmosphere pollution, Ekol. Genet., 2014, vol. 12, no. 3, pp. 60—68. https://doi.org/10.17816/ecogen12360-70

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 18-14-00022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meyer.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, A.V., Tolochko, T.A., Minina, V.I. et al. Complex Approach to Evaluating Genotoxicity from Occupational Factors in Coal Mining Industry. Russ J Genet 56, 611–617 (2020). https://doi.org/10.1134/S1022795420050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420050105

Keywords:

Navigation