Skip to main content
Log in

Identification of Genetic Variation in Introduced Reindeer Populations using DNA Markers

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In order to improve the genetic diversity of the only reindeer population in China, the Genhe forestry bureau introduced 129 reindeer from Finland. In this study, we identified the genetic diversity and of genetic variation of introduced reindeer populations. The results showed that there was a heterozygous deletion in introduced population. A total of 9 haplotypes were found using individual mtDNA D-Loop sequences and the mean allele number of the 14 microsatellite loci was 9.1429. The genetic diversity of the introduced reindeer population was higher than Chinese reindeer population. They carry some new alleles in some individuals. Furthermore, the phylogenetic tree reveals that the evolutionary status of Chinese and introduced reindeer populations were both closed to Russian reindeer populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Xu, D.W., Liu, Z.J., Shi, L.H. and Zhang, L.Y., Research survey of hypodermosis in reindeer of our country, Chin. J. Vet. Parasitol., 2008, vol. 16, pp. 42—45.

    Google Scholar 

  2. Tang, G., The difficulties and countermeasures of the Ewenki reindeer breeding industry, Heilongjiang Natl. Ser., 2008, vol. 6, pp.129—134.

    Google Scholar 

  3. Yin, Y.J., Resource status of reindeer in China and its protection measures, Heilongjiang Anim. Sci. Vet. Med., 2018, vol. 5, pp. 217—219.

    Google Scholar 

  4. Gong, Y., Inheritance and evolution: the folk functional research for the reindeer Ewenki people’s domestication of the reindeer, PhD thesis, Inner Mongolia Normal University, 2009.

  5. Yin, Y.J., Nie, C.Y., and Yuan, G.X., Development status and research progress of Chinese reindeer population, J. Daqing Norm. Univ., 2017, vol. 37, pp. 68—71.

    CAS  Google Scholar 

  6. Zhai, J.C., Analysis on genetic diversity of reindeer (Rangifer tarandus) in the Greater Khingan Mountains using microsatellite markers, Zool. Stud., 2017, vol. 56.

  7. Hukkinen, J., Müllerwille, L., Aikio, P., Heikkinen, H., Jääskö, O., Laakso, A., Magga, H., Nevalainen, S., Pokuri, O., and Raitio, K., Development of participatory institutions for reindeer management in Finland: a diagnosis of deliberation, knowledge integration and sustainability, in Reindeer Management in Northernmost Europe, Forbes, B.C., et al., Eds., vol. 184 of Ecological Studies (Analysis and Synthesis), Berlin: Springer-Verlag, 2006, pp. 47—71.

  8. Carilli, A.M., Coyne, C.J, and Leeson, P.T., Condition, potential recovery rate, and productivity of lichen (Cladonia spp.) ranges in the Finnish reindeer management area, Arctic, 2000, vol. 53, pp. 152—160.

    Google Scholar 

  9. Chakraborty, R. and Jin, L., Determination of relatedness between individuals using DNA fingerprinting, Hum. Biol., 1993, vol. 65, pp. 875—895.

    CAS  PubMed  Google Scholar 

  10. Beckmann, J.S. and Soller, M., Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites, Biotechnology, 1990, vol. 8, p. 930.

    CAS  PubMed  Google Scholar 

  11. Weber, J.L. and May, P.E., Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction, Am. J. Hum. Genet., 1989, vol. 44, pp. 388—396.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pena, S.D.J. and Chakraborty, R., Paternity testing in the DNA era, Trends Genet., 1994, vol. 10, pp. 204—209.

    Article  CAS  PubMed  Google Scholar 

  13. Weber, J.L., Human DNA polymorphisms and methods of analysis, Curr. Opin. Biotechnol., 1990, vol. 1, pp. 166—171.

    Article  CAS  PubMed  Google Scholar 

  14. Brown, W.M., Jr, G.M., and Wilson, A.C., Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, pp. 1967—1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flagstad, Ø. and Røed, K.H., Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences, Evolution, 2003, vol. 57, pp. 658—670.

    Article  CAS  PubMed  Google Scholar 

  16. Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L., Hawkins, G.A., Toldo, S.S., Fries, R., Grosz, M.D., and Yoo, J., A genetic linkage map for cattle, Genetics, 1994, vol. 136, pp. 619—639.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, L., Characterization of microsatellite loci in caribou Rangifer tarandus and their use in other artiodactyls, Mol. Ecol., 2010, vol. 6, vol. 697—699.

    Google Scholar 

  18. Røed, K.H. and Midthjell, L., Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids, Mol. Ecol., 2015, vol. 7, pp. 1773—1776.

    Article  Google Scholar 

  19. Jones, K.C., Levine, K.F., and Banks, J.D., Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis), Mol. Ecol. Resour., 2010, vol. 2, pp. 425—427.

    Article  Google Scholar 

  20. Meredith, E.P., Rodzen, J.A., Levine, K.F., and Banks, J.D, Characterization of an additional 14 microsatellite loci in California elk (Cervus elaphus) for use in forensic and population applications, Conserv. Genet., 2005, vol. 6, pp. 151—153.

    Article  Google Scholar 

  21. Kumar, S., Tamura, K., and Nei, M., MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers, Comput. Appl. Biosci., 1994, vol. 10, pp. 189—191.

    CAS  PubMed  Google Scholar 

  22. Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, pp. 47—50.

    Google Scholar 

  23. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, p. 406.

    CAS  PubMed  Google Scholar 

  24. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 1980, vol. 32, pp. 314—331.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358—1370.

    CAS  PubMed  Google Scholar 

  26. Ju, Y., Liu, H.M., Rong, M., Zhang, R.R., Dong, Y.M., Zhou, Y.N., and Xing, X.M., Genetic diversity and population genetic structure of the only population of Aoluguya Reindeer (Rangifer tarandus) in China, Mitochondrial DNA, Part A, 2019, vol. 30, pp. 24—29.

    Article  CAS  Google Scholar 

  27. Luikart, G., Allendorf, F.W., Cornuet, J.M., and Sherwin, W.B., Distortion of allele frequency distributions provides a test for recent population bottlenecks, J. Hered., 1998, vol. 89, pp. 238—247.

    Article  CAS  PubMed  Google Scholar 

  28. Lacy, R.C., Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision, Conserv. Biol., 2010, vol. 1, pp. 143—158.

    Article  Google Scholar 

  29. Zeng, Z., Meng, F.L., Wang, P., and Meng, X.X., Population distribution, quantity and risk factors of reindeer (Rangifer tarandus) in China, Xinan Minzu Daxue Xuebao, Ziran Kexueban, 2016, vol. 38, pp. 19—24.

    Google Scholar 

  30. England, P.R., Cornuet, J.M., Berthier, P., Tallmon, D.A., and Luikart, G., Estimating effective population size from linkage disequilibrium: severe bias in small samples, Conserv. Genet., 2006, vol. 7, p. 303.

    Article  Google Scholar 

  31. Xie, X. and Li, S., Comparison of base sequence diversity of cytb and d-loop gene of Nile tilapia, Genomics Appl. Biol., 2014.

  32. Teletchea, F., Molecular identification methods of fish species: reassessment and possible applications, Rev. Fish Biol. Fish., 2009, vol. 19, p. 265.

    Article  Google Scholar 

  33. Soulé, M.E. and Mills, L.S., No need to isolate genetics, Science, 1998, vol. 282, pp. 1658—1659.

    Article  Google Scholar 

  34. Saccheri, I., Kuussaari, M., Kankare, M., et al. Inbreeding and extinction in a butterfly metapopulation, Nature, 1998, vol. 392, pp. 491—494.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Genhe Forestry Bureau is acknowledged for their helping with the sample collection and preparation.

Author information

Authors and Affiliations

Authors

Contributions

Lei Han and Ruobing Han contributed equally to this work.

Corresponding author

Correspondence to H. Li.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Han, R., Zhai, J. et al. Identification of Genetic Variation in Introduced Reindeer Populations using DNA Markers. Russ J Genet 56, 603–610 (2020). https://doi.org/10.1134/S1022795420050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420050051

Keywords:

Navigation