Skip to main content
Log in

Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Left-right asymmetry is an important feature of the body plan of bilaterian animals. Malformations of the left-right axis result in pathologies of varying severity. Therefore, studying the mechanisms of its establishment in embryonic development is important for science and medicine. The main question to answer in the course of research is how and when the symmetry breakage in a developing organism occurs. This area of research is intensely developing, and various mechanisms of the left-right axis establishment have already been discovered in animals of different phylogenetic groups. Unfortunately, comparative studies of these mechanisms often focus on a few phylogenetically distant objects of developmental biology and do not analyze the diversity that exists within the taxonomic groups. Therefore, the aims of this review are to show the diversity of mechanisms for establishing left-right asymmetry in the early development of metazoans, to make assumptions about the evolutionary conservatism of these mechanisms, and to establish which of the mechanisms is primary for the Bilateria and for the Metazoa in general. The article systematizes our knowledge about the establishment of left-right asymmetry on the basis of the Nodal signaling cascade activity, compares the morphology and functioning of the left-right organizers of different animals, and compares the role of mechanical tensions in establishing asymmetry in different Protostomia. Generalization and analysis of data on the establishment of left-right asymmetry provides a new insight into the evolution of the development of metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Abe, M. and Kuroda, R., The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling, Development, 2019, vol. 146, no. 9, p. dev175976.

    Article  CAS  PubMed  Google Scholar 

  2. Afzelius, B.A., A human syndrome caused by immotile cilia, Science, 1976, vol. 193, no. 4250, pp. 317–319.

    Article  CAS  PubMed  Google Scholar 

  3. Blum, M., Andre, P., Muders, K., et al., Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo, Differentiation, 2007, vol. 75, no. 2, pp. 133–146.

    Article  CAS  PubMed  Google Scholar 

  4. Blum, M., Weber, T., Beyer, T., et al., Evolution of leftward flow, Semin. Cell Dev. Biol., Academic Press, 2009, vol. 20, no. 4, pp. 464–471.

  5. Boycott, A.E. and Diver, C., On the inheritance of sinistrality in limnaea peregra,Proc. R. Soc, London: Ser. B, 1923, vol. 95, no. 666, pp. 207–213.

    Google Scholar 

  6. Cartwright, J.H.E., Piro, O., and Tuval, I., Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 19, pp. 7234–7239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, C., Norris, D., and Bhattacharya, S., Transcriptional control of left-right patterning in cardiac development, Pediatr. Cardiol., 2010, vol. 31, no. 3, pp. 371–377.

    Article  CAS  PubMed  Google Scholar 

  8. Coutelis, J.B., Géminard, C., Spéder, P., et al., Drosophila left/right asymmetry establishment is controlled by the hox gene abdominal-b,Dev. Cell, 2013, vol. 24, no. 1, pp. 89–97.

    Article  CAS  PubMed  Google Scholar 

  9. Coutelis, J.B., González-Morales, N., Géminard, C., et al., Diversity and convergence in the mechanisms establishing L/R asymmetry in Metazoa, EMBO Rep., 2014. e201438972.

  10. Duboc, V., Röttinger, E., Lapraz, F., et al., Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side, Dev. Cell, 2005, vol. 9, no. 1, pp. 147–158.

    Article  CAS  PubMed  Google Scholar 

  11. Essner, J.J., Amack, J.D., Nyholm, M.K., et al., Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut, Development, 2005, vol. 132, no. 6, pp. 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  12. Esteban, C.R., Capdevila, J., Economides, A.N., et al., The novel Cer-like protein Caronte mediates the establishment of embryonic left-right asymmetry, Nature, 1999, vol. 401, no. 6750, p. 243.

    Article  Google Scholar 

  13. Field, S., Riley, K.L., Grimes, D.T., et al., Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2, Development, 2011, vol. 138, no. 6, pp. 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. González-Morales, N., Géminard, C., Lebreton, G., et al., The atypical cadherin dachsous controls left-right asymmetry in Drosophila,Dev. Cell, 2015, vol. 33, no. 6, pp. 675–689.

    Article  PubMed  CAS  Google Scholar 

  15. Grande, C. and Patel, N.H., Nodal signalling is involved in left-right asymmetry in snails, Nature, 2009, vol. 457, no. 7232, pp. 1007–1011.

    Article  CAS  PubMed  Google Scholar 

  16. Gros, J., Feistel, K., Viebahn, C., et al., Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick, Science, 2009, vol. 324, no. 5929, pp. 941–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamada, H., Roles of motile and immotile cilia in left-right symmetry breaking, in Tiology and Morphogenesis of Congenital Heart Disease, Tokyo: Springer, 2016, pp. 57–65.

    Google Scholar 

  18. Hojo, M., Takashima, S., Kobayashi, D., et al., Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle, Dev. Growth Differ., 2007, vol. 49, no. 5, pp. 395–405.

    Article  CAS  PubMed  Google Scholar 

  19. Kurita, Y. and Wada, H., Evidence that gastropod torsion is driven by asymmetric cell proliferation activated by TGF-β signalling, Biol. Lett., 2011, vol. 7, no. 5, pp. 759–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuroda, R., Endo, B., Abe, M., et al., Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails, Nature, 2009, vol. 462, no. 7274, pp. 790–794.

    Article  CAS  PubMed  Google Scholar 

  21. Kuroda, R., Fujikura, K., Abe, M., et al., Diaphanous gene mutation affects spiral cleavage and chirality in snails, Sci. Rep., 2016, vol. 6, p. 34 809.

    Article  CAS  Google Scholar 

  22. Lee, J.D. and Anderson, K.V., Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse, Dev. Dyn., 2008, vol. 237, no. 12, pp. 3464–3476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levin, M., Johnson, R.L., Sterna, C.D., et al., A molecular pathway determining left-right asymmetry in chick embryogenesis, Cell, 1995, vol. 82, no. 5, pp. 803–814.

    Article  CAS  PubMed  Google Scholar 

  24. Lin, C.Y., Tsai, M.Y., Liu, Y.H., et al., Klf8 regulates left-right asymmetric patterning through modulation of Kupffer’s vesicle morphogenesis and spaw expression, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Logan, M., Pagan-Westphal, S.M., Smith, D.M., et al., The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals, Cell, 1998, vol. 94, no. 3, pp. 307–317.

    Article  CAS  PubMed  Google Scholar 

  26. Long, S., Ahmad, N., and Rebagliati, M., The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry, Development, 2003, vol. 130, no. 11, pp. 2303–2316.

    Article  CAS  PubMed  Google Scholar 

  27. Mahaffey, J.P., Grego-Bessa, J., Liem, K.F., et al., Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo, Development, 2013, vol. 140, no. 6, pp. 1262–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McGrath, J., Somlo, S., Makova, S., et al., Two populations of node monocilia initiate left-right asymmetry in the mouse, Cell, 2003, vol. 114, no. 1, pp. 61–73.

    Article  CAS  PubMed  Google Scholar 

  29. Meno, C., Shimono, A., Saijoh, Y., et al., Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal, Cell, 1998, vol. 94, no. 3, pp. 287–297.

    Article  CAS  PubMed  Google Scholar 

  30. Molina, M.D., de Crozé, N., Haillot, E., et al., Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 4, pp. 445–453.

    Article  CAS  PubMed  Google Scholar 

  31. Morokuma, J., Ueno, M., Kawanishi, H., et al., Hrnodal, the ascidian nodal-related gene, is expressed in the left side of the epidermis, and lies upstream of hrpitx,Dev. Genes Evol., 2002, vol. 212, no. 9, pp. 439–446.

    Article  CAS  PubMed  Google Scholar 

  32. Naganathan, S.R., Furthauer, S., Nishikawa, M., et al., Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking, Elife, 2014, vol. 3. e04165.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nieuwkoop, P.D. and Faber, J., Normal Table of Xenopus laevis, 1994.

  34. Nishide, K., Mugitani, M., Kumano, G., et al., Neurula rotation determines left-right asymmetry in ascidian tadpole larvae, Development, 2012, vol. 139, no. 8, pp. 1467–1475.

    Article  CAS  PubMed  Google Scholar 

  35. Nonaka, S., Tanaka, Y., Okada, Y., et al., Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein, Cell, 1998, vol. 95, no. 6, pp. 829–837.

    Article  CAS  PubMed  Google Scholar 

  36. Nonaka, S., Shiratori, H., Saijoh, Y., et al., Determination of left-right patterning of the mouse embryo by artificial nodal flow, Nature, 2002, vol. 418, no. 6893, pp. 96–99.

    Article  CAS  PubMed  Google Scholar 

  37. Nonaka, S., Yoshiba, S., Watanabe, D., et al., De novo formation of left-right asymmetry by posterior tilt of nodal cilia, PLoS Biol., 2005, vol. 3, no. 8. e268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Okada, Y., Nonaka, S., Tanaka, Y., et al., Abnormal nodal flow precedes situs inversus in iv and inv mice, Mol. Cell, 1999, vol. 4, no. 4, pp. 459–468.

    Article  CAS  PubMed  Google Scholar 

  39. Oki, S., Hashimoto, R., Okui, Y., et al., Sulfated glycosaminoglycans are necessary for nodal signal transmission from the node to the left lateral plate in the mouse embryo, Development, 2007, vol. 134, no. 21, pp. 3893–3904.

    Article  CAS  PubMed  Google Scholar 

  40. Pagán-Westphal, S.M. and Tabin, C.J., The transfer of left-right positional information during chick embryogenesis, Cell, 1998, vol. 93, no. 1, pp. 25–35.

    Article  PubMed  Google Scholar 

  41. Pohl, C., Left-right patterning in the C. elegans embryo: unique mechanisms and common principles, Commun. Integr. Biol., 2011, vol. 4, no. 1, pp. 34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pohl, C. and Bao, Z., Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis, Dev. Cell, 2010, vol. 19, no. 3, pp. 402–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saijoh, Y., Oki, S., Ohishi, S., et al., Left-right patterning of the mouse lateral plate requires nodal produced in the node, Dev. Biol., 2003, vol. 256, no. 1, pp. 161–173.

    Article  CAS  Google Scholar 

  44. Saydmohammed, M., Yagi, H., Calderon, M., et al., Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality, Nat. Commun., 2018, vol. 9, no. 1, p. 3381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Schröder, S.S., Tsikolia, N., Weizbauer, A., et al., Paraxial nodal expression reveals a novel conserved structure of the left-right organizer in four mammalian species, Cells Tissues Organs, 2016, vol. 201, no. 2, pp. 77–87.

    Article  PubMed  Google Scholar 

  46. Schweickert, A., Weber, T., Beyer, T., et al., Cilia-driven leftward flow determines laterality in Xenopus,Curr. Biol., 2007, vol. 17, no. 1, pp. 60–66.

    Article  CAS  PubMed  Google Scholar 

  47. Schweickert, A., Vick, P., Getwan, M., et al., The nodal inhibitor Coco is a critical target of leftward flow in Xenopus,Curr. Biol., 2010, vol. 20, no. 8, pp. 738–743.

    Article  CAS  PubMed  Google Scholar 

  48. Shibazaki, Y., Shimizu, M., and Kuroda, R., Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo, Curr. Biol., 2004, vol. 14, no. 16, pp. 1462–1467.

    Article  CAS  PubMed  Google Scholar 

  49. Shinohara, K., Kawasumi, A., Takamatsu, A., et al., Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo, Nat. Commun., 2012, vol. 3, p. 622.

    Article  PubMed  CAS  Google Scholar 

  50. Shiraishi, I. and Ichikawa, H., Human heterotaxy syndrome, Circ. J., 2012, p. CJ-12-0957.

  51. Shiratori, H. and Hamada, H., The left-right axis in the mouse: from origin to morphology, Development, 2006, vol. 133, no. 11, pp. 2095–2104.

    Article  CAS  PubMed  Google Scholar 

  52. Spéder, P., Ádám, G., and Noselli, S., Type ID unconventional myosin controls left-right asymmetry in Drosophila, Nature, 2006, vol. 440, no. 7085, pp. 803–807.

    Article  PubMed  CAS  Google Scholar 

  53. Su, Y.H., Telling left from right: left-right asymmetric controls in sea urchins, Genes, vol. 52, no. 3, pp. 269–278.

  54. Sulik, K., Dehart, D.B., Inagaki, T., et al., Morphogenesis of the murine node and notochordal plate, Dev. Dyn., 1994, vol. 201, no. 3, pp. 260–278.

    Article  CAS  PubMed  Google Scholar 

  55. Supp, D.M., Witte, D.P., Potter, S.S., et al., Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice, Nature, 1997, vol. 389, no. 6654, pp. 963–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanaka, Y., Okada, Y., and Hirokawa, N., FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination, Nature, 2005, vol. 435, no. 7039, pp. 172–177.

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka, Y., Yamada, S., Connop, S.L., et al., Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi,Dev. Biol., 2019, vol. 449, no. 1, pp. 52–61.

    Article  CAS  PubMed  Google Scholar 

  58. Tingler, M., Kurz, S., Maerker, M., et al., A conserved role of the unconventional myosin 1d in laterality determination, Curr. Biol., 2018, vol. 28, no. 5, pp. 810–816. e3.

  59. Tisler, M., Wetzel, F., Mantino, S., et al., Cilia are required for asymmetric nodal induction in the sea urchin embryo, BMC Dev. Biol., 2016, vol. 16, no. 1, p. 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tsikolia, N., Schröder, S., Schwartz, P., et al., Paraxial left-sided nodal expression and the start of left-right patterning in the early chick embryo, Differentiation, 2012, vol. 84, no. 5, pp. 380–391.

    Article  CAS  PubMed  Google Scholar 

  61. Watanabe, H., Schmidt, H.A., Kuhn, A., et al., Nodal signalling determines biradial asymmetry in hydra, Nature, 2014, vol. 515, no. 7525, p. 112.

    Article  CAS  PubMed  Google Scholar 

  62. Yamada, S., Tanaka, Y., Imai, K.S., et al., Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos, Dev. Biol., 2019, vol. 448, no. 2, pp. 173–182.

    Article  CAS  PubMed  Google Scholar 

  63. Yu, J.K., Holland, L.Z., and Holland, N.D., An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation, Evol. Dev., 2002, vol. 4, no. 6, pp. 418–425.

    Article  CAS  PubMed  Google Scholar 

  64. Yuan, S., Zhao, L., Brueckner, M., et al., Intraciliary calcium oscillations initiate vertebrate left-right asymmetry, Curr. Biol., 2015, vol. 25, no. 5, pp. 556–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, L., Belmont, J.W., and Ware, S.M., Genetics of human heterotaxias, Eur. J. Hum. Genet., 2006, vol. 14, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to my supervisor S.V. Kremnev for his help in writing this article and Yu.A. Kraus for valuable comments.

Funding

This work was performed within the framework of the State Assignment “Cellular and Molecular Basis of Morphogenetic Responses to Mechanical Tensions” (contract no. 30-02-16, no. AAAA-A16-116021660089-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Petri.

Ethics declarations

The author declares that she has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petri, N.D. Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans. Russ J Dev Biol 51, 84–98 (2020). https://doi.org/10.1134/S1062360420020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420020058

Keywords:

Navigation