Skip to main content
Log in

Life Cycle of Nitzschia palea (Kützing) W. Smith (Bacillariophyta)

  • DEVELOPMENTAL BIOLOGY OF PLANTS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The diatom Nitzschia palea is a widespread eurybiontic alga that inhabits the benthos of freshwater ponds and watercourses, soils and caves. This species has a potential for biotechnological applications; therefore, knowledge on its biology is important. Although the species has been studied quite extensively, comprehensive information on its life cycle properties, including cardinal points, is still lacking. In this contribution, based on our own observations and literature data, we supplement and summarize the available information on the species’ life cycle, including data on morphology, morphometry, teratological structures of valves and cardinal points. We also revealed a uniparental inheritance of the mitochondrial gene cox1 in N. palea. The data obtained will be important for phylogeography studies of the species, as well as provide fundamental basis for the technology of long-term maintenance of N. palea in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abdel-Hamid, I.M., El-Refaay, A.D., Abdel-Mogib, M., et al., Studies on biomass and lipid production of seven diatom species with special emphasis on lipid composition of Nitzschia palea (Bacillariophyceae) as reliable biodiesel feedstock, Algol. Stud., 2013, vol. 143, pp. 65–87.

    Article  CAS  Google Scholar 

  2. Abdullin, Sh.R., Cyanobacterial–algal cenoses of the Shulgan-Tash Cave, Southern Urals, Russ. J. Ecol., 2009, vol. 40, no. 4, pp. 301–303.

    Article  Google Scholar 

  3. Abdullin, Sh.R. and Bagmet, V.B., Experimental analysis for the possibility of heterotrophy in algae: the example of some strains from the Propashchaya Yama Cave, Russ. J. Ecol., 2015, vol. 46, no. 5, pp. 481–482.

    Article  Google Scholar 

  4. Abdullin, Sh.R. and Bagmet, V.B., Myxotrophy of cyanobacteria and algae inhabiting caves, Zh. Obshch. Biol., 2016, vol. 77, no. 1, pp. 54–62.

    Google Scholar 

  5. Abdullin, Sh.R., Urazbakhtina, D., and Bagmet, V.B., Preliminary study of fungicidal and fungistatic activity of some cave microalgae, in Abstracts of BIT’s 3rd Annual International Congress of Algae–2014 (Dalian, October 16–18,2014, China), Dalian, 2014, p. 203.

  6. Amato, A., Orsini, L., D’Alelio, D., et al., Life cycle, size reduction patterns, and ultrastructure of the pennate planktonic diatom Pseudo-nitzschia delicatissima (Bacillariophyceae), J. Phycol., 2005, vol. 41, no. 3, pp. 542–556.

    Article  Google Scholar 

  7. Amato, A., Kooistra, W.H.C.F., Ghiron, J.H.L., et al., Reproductive isolation among sympatric cryptic species in marine diatoms, Protist, 2007, vol. 158, no. 2, pp. 193–207.

    Article  CAS  Google Scholar 

  8. Andersen, R.A., Algal Culturing Techniques, New York: Elsevier Academic Press, 2005.

    Google Scholar 

  9. Bagmet, V.B., Abdullin, Sh.R., Kuluev, B.R., et al., The effect of salinity on the reproduction rate of Nitzschia palea (Kützing) W. Smith (Bacillariophyta) clones, Russ. J. Ecol., 2017, vol. 48, no. 3, pp. 287–289.

    Article  Google Scholar 

  10. Barr, C.M., Neiman, M., and Taylor, D.R., Inheritance and recombination of mitochondrial genomes in plants, fungi and animals, New Phytol., 2005, vol. 168, pp. 39–50.

    Article  CAS  Google Scholar 

  11. Binea, H.K., Kassim, T.I., and Binea, A.K., Antibacterial activity of diatom Nitzschia palea (Kutz.) W. Sm. extract, Iraqi J. Biotechnol., 2009, vol. 8, no. 2, pp. 562–566.

    Google Scholar 

  12. BLAST (Basic Local Alignment Search Tool), National Center for Biotechnology Information, U.S. National Library of Medicine. https://blast.ncbi.nlm.nih.gov/ Blast.cgi. Accessed March 14, 2019.

  13. Bonfield, J.K., Smith, K.F., and Staden, R., A new DNA sequence assembly program, Nucleic Acids Res., 1995, vol. 23, pp. 4992–4999.

    Article  CAS  Google Scholar 

  14. Chepurnov, V.A., Mann, D.G., Sabbe, K., et al., Experimental studies on sexual reproduction in diatoms, Int. Rev. Cytol., 2004, vol. 237, pp. 91–154.

    Article  CAS  Google Scholar 

  15. Chepurnov, V.A., Mann, D.G., Sabbe, K., et al., Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyta), Eur. J. Phycol., 2005, vol. 40, pp. 379–395.

    Article  Google Scholar 

  16. Davidovich, N.A., Species specific sizes and size range of sexual reproduction in diatoms, in Proc. 16th Int. Diatom Symp. (Athens and Aegean Islands, August 25–September 1,2000), Athens: Univ. Athens, 2001, pp. 191–196.

  17. Davidovich, N.A., Photoregulation of sexual reproduction in Bacillariophyta (review), Int. J. Algae, 2002, vol. 4, no. 2, pp. 56–71.

    Article  Google Scholar 

  18. Davidovich, N.A., Davidovich, O.I., Podunai, Yu.A., et al., Reproductive properties of diatoms significant for their cultivation and biotechnology, Russ. J. Plant Physiol., 2015, vol. 62, no. 2, pp. 153–160.

    Article  CAS  Google Scholar 

  19. Drebes, G., Sexuality, in The Biology of Diatoms: Botanical Monographs, Werner, D., Ed., Oxford: Blackwell Sci. Publ., 1977, pp. 250–283.

    Google Scholar 

  20. Echt, C.S., Erdahl, L.A., and McCoy, T.J., Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa, Genome, 1992, vol. 35, no. 1, pp. 84–87.

    Article  CAS  Google Scholar 

  21. Edlund, M.B. and Stoermer, E.F., Evolutionary, and systematic significance of diatom life histories, J. Phycol., 1997, vol. 33, no. 6, pp. 897–918.

    Article  Google Scholar 

  22. El’yashev, A.A., A simple method for preparing a highly refracting medium for diatom analysis, Tr. Nauchno-Issled. Inst. Geol. Arktiki, 1957, no. 4, pp. 74–76.

  23. Estes, A.M. and Dute, R.R., Valve abnormalities in diatom clones maintained in long-term culture, Diatom Res., 1994, vol. 9, no. 2, pp. 249–258.

    Article  Google Scholar 

  24. Evans, K.M., Wortley, A.H., and Mann, D.G., An assessment of potential diatom “barcode” genes (cox1, rbcl, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta), Protist, 2007, vol. 158, no. 3, pp. 349–364.

    Article  CAS  Google Scholar 

  25. Falasco, E., Bona, F., Ginepro, M., et al., Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions, Water SA, 2009, vol. 35, no. 5, pp. 595–606.

    Article  CAS  Google Scholar 

  26. Fuchs, N., Scalco, E., Kooistra, W.H.C.F., et al., Genetic characterization and life cycle of the diatom Fragilariopsis kerguelensis,Eur. J. Phycol., 2013, vol. 48, no. 4, pp. 411–426.

    Article  CAS  Google Scholar 

  27. Galtier, N., Gouy, M., and Gautier, C., Seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny, Comput. Appl. Biosci., 1996, vol. 12, no. 6, pp. 543–548.

    CAS  PubMed  Google Scholar 

  28. Gastineau, R., Leignel, V., Jacquette, B., et al., Inheritance of mitochondrial DNA in the pennate diatom Haslea ostrearia (Naviculaceae) during auxosporulation suggests a uniparental transmission, Protist, 2013, vol. 164, no. 3, pp. 340–351.

    Article  CAS  Google Scholar 

  29. Geitler, L., Der formwechsel der pennaten Diatomeen (Kieselalgen), Arch. Protistenkd., 1932, vol. 78, pp. 1–226.

    Google Scholar 

  30. Genkal, S.I. and Elizarova, V.A., New data on changes in algae Diatoma elongatum Ag. in culture, Biol. Vnutr. Vod, 1989, no. 81, pp. 32–36.

  31. Golichenkov, V.A., Biologiya razvitiya (Developmental Biology), Moscow: Mosk. gos. Univ., 1991.

  32. Google Maps [online]. https://www.google.com/maps/. Accessed May 27, 2019.

  33. Hassan, F.M., Aljbory, I.F., and Kassim, T.I., An attempt to stimulate lipids for biodiesel production from locally isolated microalgae in Iraq, Baghdad Sci. J., 2013, vol. 10, no. 1, pp. 97–108.

    Article  Google Scholar 

  34. Hess, S.K., Lepetit, B., Kroth, P.G., et al., Production of chemicals from microalgae lipids—status and perspectives, Eur. J. Lipid Sci. Technol., 2018, vol. 120, no. 1, pp. 1–26.

    Article  Google Scholar 

  35. Hofmann, G., Werum, M., and Lange-Bertalot, H., Diatomeen im Süßwasser-Benthos von Mitteluropa. Bestimmungsflora Kieselalgen für die ökologische Praxis, Rugell: A.R.G. Gantner Verlag K.G., 2011.

  36. Jin, C., Yu, Zh., Peng, Sh., et al., The characterization and comparison of exopolysaccharides from two benthic diatoms with different biofilm formation abilities, An. Acad. Bras. Cienc., 2018, vol. 90, no. 2, pp. 1503–1519.

    Article  CAS  Google Scholar 

  37. Kermarrec, L., Franc, A., Rimet, F., et al., Next generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms, Mol. Ecol. Resour., 2013, vol. 13, no. 4, pp. 607–619.

    Article  CAS  Google Scholar 

  38. Kiselev, K.V., Dubrovina, A.S., and Tyunin, A.P., The methylation status of plant genomic DNA influences PCR efficiency, J. Plant Physiol., 2015, vol. 175, pp. 59–67.

    Article  CAS  Google Scholar 

  39. Krammer, K. and Lange-Bertalot, H., Bacillariophyceae, 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, in Süßwasserflora von Mitteleuropa. Band 2/2, Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D., Eds., Jena: Gustav Fischer Verlag, 1988, pp. 1–596.

  40. Mann, D.G., Patterns of sexual reproduction in diatoms, Hydrobiologia, 1993, vol. 269, pp. 11–20.

    Article  Google Scholar 

  41. Mann, D.G. and Chepurnov, V.A., What have the Romans ever done for us? The past and future contribution of culture studies to diatom systematic, Nova Hedwigia, 2004, vol. 79, nos. 1–2, pp. 237–291.

    Article  Google Scholar 

  42. Rimet, F., Trobajo, R., Mann, D.G., et al., When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta), Protist, 2014, vol. 165, no. 3, pp. 245–259.

    Article  Google Scholar 

  43. Roshchin, A.M., Zhiznennye tsikly diatomovykh vodoroslei (Life Cycles of Diatoms), Kiev: Naukova Dumka, 1994.

  44. Rovira, L., Trobajo, R., Sato, S., et al., Genetic and physiological diversity in the diatom Nitzschia inconspicua,J. Eukaryotic Microbiol., 2015, vol. 62, no. 6, pp. 815–832.

    Article  Google Scholar 

  45. Trobajo, R., Mann, D.G., and Cox, E.J., Sexual reproduction in Nitzschia fonticola: the importance of studying the entire life cycle in diatoms, Phycologia, 2005, vol. 44, no. 4, p. 103.

    Article  Google Scholar 

  46. Trobajo, R., Clavero, E., Chepurnov, V.A., et al., Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae), Rhycologia, 2009, vol. 48, no. 6, pp. 443–459.

    Article  Google Scholar 

  47. Trobajo, R., Mann, D.G., Clavero, E., et al., The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae), Eur. J. Phycol., 2010, vol. 45, no. 4, pp. 413–425.

    Article  CAS  Google Scholar 

  48. Zhang, W., Wang, F., Gao, B., et al., An integrated biorefinery process: stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass, Algal Res.—Biomass Biofuels Bioprod., 2018, vol. 32, pp. 193–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. R. Abdullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagmet, V.B., Abdullin, S.R., Mazina, S.E. et al. Life Cycle of Nitzschia palea (Kützing) W. Smith (Bacillariophyta). Russ J Dev Biol 51, 106–114 (2020). https://doi.org/10.1134/S1062360420020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420020022

Keywords:

Navigation