Skip to main content
Log in

Organotypic Culturing as a Way to Study Recovery Opportunities of the Eye Retina in Vertebrates and Humans

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Using the literature and the authors’ own data, the review provides information on experiments carried out at different times with organotypic culturing of the retina in vertebrates and humans. The method allows one to maintain the structure and viability of the retina, model a number of its pathological conditions, and observe the processes of retinal development, regeneration, reconstruction, death, and growth of neuron outgrowths. In addition, organotypic culturing makes it possible to affect all indicated processes by different regulating factors as well as protective/damaging agents at strictly specified concentrations and under controlled conditions. Particular attention is paid to the behavior of retinal pigment epithelium cells, photoreceptor cells, Müller glia cells, and ganglion cells and their axons (that is, to those cell populations that are most often affected in cases of different pathological conditions and retinal diseases). A separate section is devoted to the production and culturing of so-called retinal organoids, which is being actively developed at present. The direction promises opportunities for the transplantation of retinal cells, conducting experiments on gene therapy, and testing ophthalmic pharmacological drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ader, M. and Tanaka, E.M., Modeling human development in 3D culture, Curr. Opin. Cell Biol., 2014, vol. 31, pp. 23–28.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Ali, H., Beckerman, S.R., Bixby, J.L., and Lemmon, V.P., In vitro models of axon regeneration, Exp. Neurol., 2017, vol. 287, pp. 423–434.

    Article  CAS  PubMed  Google Scholar 

  3. Amini, R., Rocha-Martins, M., and Norden, C., Neuronal migration and lamination in the vertebrate retina, Front. Neurosci., 2018, vol. 11, p. 742.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Antoni, D., Burckel, H., Josset, E., and Noel, J., Three-dimensional cell culture: a breakthrough in vivo, Int. J. Mol. Sci., 2015, vol. 16, pp. 5517–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bandyopadhyay, M. and Rohrer, B., Photoreceptor structure and function is maintained in organotypic cultures of mouse retinas, Mol. Vis., 2010, vol. 16, pp. 1178–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Boyd, W.H., A chamber for organotypic culture adapted for growing large volumes of tissue, Stain. Technol., 1971, vol. 46, pp. 85–87.

    Article  CAS  PubMed  Google Scholar 

  7. Braschler, U.F., Iannone, A., Spenger, C., Streit, J., and Lüscher, H.R., A modified roller tube technique for organotypic cocultures of embryonic rat spinal cord, sensory ganglia and skeletal muscle, J. Neurosci. Methods, 1989, vol. 29, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  8. Browne, A.W., Arnesano, C., Harutyunyan, N., Khuu, T., Martinez, J.C., Pollack, H.A., Koos, D.S., Lee, T.C., Fraser, S.E., Moats, R.A., Aparicio, J.G., and Cobrinik, D., Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging, Invest. Ophthalmol. Vis. Sci., 2017, vol. 58, pp. 3311–3318.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Caffé, A.R., Söderpalm, A., and van Veen, T., Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors, Curr. Eye Res., 1993, vol. 12, pp. 719–726.

    Article  PubMed  Google Scholar 

  10. Caffe, A.R., Ahuja, P., Holmqvist, B., Azadi, S., Forsell, J., Holmqvist, I., Soderpalm, A.K., and van Veen, T., Mouse retina explants after long-term culture in serum free medium, J. Chem. Neuroanat., 2001, vol. 22, no. 4, pp. 263–273.

    Article  CAS  PubMed  Google Scholar 

  11. Capowski, E.E., Samimi, K., Mayerl, S.J., Phillips, M.J., Pinilla, I., Howden, S.E., Saha, J., Jansen, A.D., Edwards, K.L., Jager, L.D., Barlow, K., Valiauga, R., Erlichman, Z., Hagstrom, A., Sinha, D., Sluch, V.M., Chamling, X., Zack, D.J., Skala, M.C., and Gamm, D.M., Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines, Development, 2019, vol. 146, no. 1. dev171686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carri, N.G., Richardson, P., and Ebendal, T., Choroid coat extract and ciliary neurotrophic factor strongly promote neurite outgrowth in the embryonic chick retina, Int. J. Dev. Neurosci., 1994, vol. 12, pp. 567–578.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, H.Y., Kaya, K.D., Dong, L., and Swaroop, A., Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation, Mol. Vis., 2016, vol. 22, pp. 1077–1094.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho, H.J., Verbridge, S.S., Davalos, R.V., and Lee, Y.W., Development of an in vitro 3D brain tissue model mimicking in vivo-like pro-inflammatory and pro-oxidative responses, Ann. Biomed. Eng., 2018, vol. 46, pp. 877–887.

    Article  PubMed  Google Scholar 

  15. Chohan, A., Singh, U., Kumar, A., and Kaur, J., Müller stem cell dependent retinal regeneration, Clin. Chim. Acta, 2017, vol. 464, pp. 160–164.

    Article  CAS  PubMed  Google Scholar 

  16. Cirillo, A., Chifflet, S., and Villar, B., Neural retina of chick embryo in organ culture: effects of blockade of growth factors by suramin, Cell Tissue Res., 2001, vol. 304, no. 3, pp. 323–331.

    Article  CAS  PubMed  Google Scholar 

  17. Defoe, D.M. and Easterling, K.C., Reattachment of retinas to cultured pigment epithelial monolayers from Xenopus laevis,Invest. Ophthalmol. Vis. Sci., 1994, vol. 35, pp. 2466–2476.

    CAS  PubMed  Google Scholar 

  18. Deng, W.-L., Gao, M.-L., Lei, X.-L., Lv, J.-N., Zhao, H., He, Kai-Wen., Xia, X.-X., Li, L.-Y., Chen, Y.-C., Li, Y.P., Pan, D., Xue, T., and Jin, Z.-B., Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients, Stem Cell Rep., 2018, vol. 10, pp. 1267–1281.

    Article  CAS  Google Scholar 

  19. DiStefano, T., Chen, H.Y., Panebianco, C., Kaya, K.D., Brooks, M.J., Gieser, L., Morgan, N.Y., Pohida, T., and Swaroop, A., Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors, Stem Cell Rep., 2018, vol. 10, pp. 300–313.

    Article  CAS  Google Scholar 

  20. Dowling, J.E., The Retina. An Approachable Part of the Brain, revised edition, Belknap: Harvard Univ. Press, 2012.

  21. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., and Sasai, Y., Self-organizing optic-cup morphogenesis in three-dimensional culture, Nature, 2011, vol. 472, pp. 51–56.

  22. Feigenspan, A., Bormann, J., and Wässle, H., Organotypic slice culture of the mammalian retina, Vis. Neurosci., 1993, vol. 10, pp. 203–217.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrer-Martín, R.M., Martín-Oliva, D., Sierra, A., Carrasco, M.-C., Martin-Estebané, M., Calvente, R., Marín-Teva, J.L., Navascués, J., and Cuadros, M.A., Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death, Exp. Eye Res., 2014, vol. 121, pp. 42–57.

    Article  CAS  PubMed  Google Scholar 

  24. Foltz, L.P. and Clegg, D.O., Patient-derived induced pluripotent stem cells for modeling genetic retinal dystrophies, Prog. Ret. Eye Res., 2019, vol. 68, pp. 54–66.

    Article  CAS  Google Scholar 

  25. Franze, K., Grosche, J., Skatchkov, S.N., Schinkinger, S., Foja, C., Schild, D., Uckermann, O., Travis, K., Rei-chenbach, A., and Guck, J., Müller cells are living optical fibers in the vertebrate retina, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 8287–8292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gähwiler, B.H., Organotypic cultures of neural tissue, Trends Neurosci., 1988, vol. 11, pp. 484–489.

    Article  PubMed  Google Scholar 

  27. Gähwiler, B.H., Thompson, S.M., and Müller, D., Preparation and maintenance of organotypic slice cultures of CNS tissue, Curr. Protoc. Neurosci., 2001, chapter 6, unit 6.11.

  28. Gähwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A., and Thompson, S.M., Organotypic slice cultures: a technique has come of age, Trends Neurosci., 1997, vol. 20, pp. 471–477.

  29. Germer, A., Jahnke, C., Mack, A., Enzmann, V., and Reichenbach, A., Modification of glutamine synthetase expression by mammalian Müller (glial) cells in retinal organ cultures, Neuroreport, 1997, vol. 8, pp. 3067–3072.

    Article  CAS  PubMed  Google Scholar 

  30. Gramage, E., Li, J., and Hitchcock, P., The expression and function of midkine in the vertebrate retina, Br. J. Pharmacol., 2014, vol. 171, pp. 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grigoryan, E., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Croatia: In Tech, 2012, pp. 145–164.

  32. Grigoryan, E.N., Molecular factors of the maintenance and activation of the juvenile phenotype of cellular sources for eye tissue regeneration, Biochemistry (Moscow), 2018a, vol. 83, no. 11, pp. 1318–1331.

    CAS  PubMed  Google Scholar 

  33. Grigoryan, E.N., Endogenous cell sources for eye retina regeneration in vertebrate animals and humans, Russ. J. Dev. Biol., 2018b, vol. 49, no. 6, pp. 1–13.

    Article  Google Scholar 

  34. Grigoryan, E.N., Novikova, Y.P., Gancharova, O.S., Kilina, O.V., and Philippov, P.P., New antioxidant SkQ1 is an effective protector of rat eye retinal pigment epithelium and choroid under conditions of long-term organotypic cultivation, Adv. Aging Res., 2012, vol. 1, pp. 31–37.

    Article  Google Scholar 

  35. Grigoryan, E.N., Novikova, Y.P., Kilina, O.V., and Philippov, P.P., New antioxidant SkQ1 is an effective protector of rat neural retina under conditions of long-term organotypic cultivation, Adv. Aging Res., 2013, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  36. Grigoryan, E.N., Poplinskaya, V.A., and Novikova, Y.P., Retinal remodeling under conditions of organotypic 3D culturing in vitro and after damage in vivo in lower and higher vertebrates, New Front. Ophthalmol., 2016, vol. 2, pp. 66–76.

    Article  Google Scholar 

  37. Halfter, W. and Deiss, S., Axonal pathfinding in organ-cultured embryonic avian retinae, Dev. Biol., 1986, vol. 114, pp. 296–310.

    Article  CAS  PubMed  Google Scholar 

  38. Hatakeyama, J. and Kageyama, R., Retrovirus-mediated gene transfer to retinal explants, Methods, 2002, vol. 28, pp. 387–395.

    Article  CAS  PubMed  Google Scholar 

  39. Hoff, A., Hämmerle, H., and Schlosshauer, B., Organotypic culture system of chicken retina, Brain Res. Brain Res. Protoc., 1999, vol. 4, pp. 237–248.

    Article  CAS  PubMed  Google Scholar 

  40. Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O., Functional architecture of the retina: development and disease, Prog. Retin. Eye Res., 2014, vol. 42, pp. 44–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hopkins, J.M. and Bunge, R.P., Regeneration of axons from adult human retina in vitro, Exp. Neurol., 1991, vol. 112, pp. 243–251.

    Article  CAS  PubMed  Google Scholar 

  42. de Hoz, R., Rojas, B., Ramirez, A.I., Salazar, J.J., Gallego, B.I., Triviño, A., and Ramirez, J.M., Retinal macroglial responses in health and disease, Biomed. Res. Int., 2016, vol. 2016. 2954721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humpel, C., Organotypic brain slice cultures: a review, Neuroscience, 2015, vol. 305, pp. 86–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hurst, J., Kuehn, S., Jashari, A., Tsai, T., Bartz-Schmidt, K.U., Schnichels, S., and Joachim, S.C., A novel porcine ex vivo retina culture model for oxidative stress induced by H2O2, Altern. Lab. Anim., 2017, vol. 45, pp. 11–25.

    Article  PubMed  Google Scholar 

  45. Jeon, S. and Oh, I.H., Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases, BMB Rep., 2015, vol. 48, pp. 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jorstad, N.L., Wilken, M.S., Grimes, W.N., Wohl, S.G., Vanden, BoschL.S., Yoshimatsu, T., Wong, R.O., Rieke, F., and Reh, T.A., Stimulation of functional neuronal regeneration from Müller glia in adult mice, Nature, 2017, vol. 548, pp. 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaempf, S., Walter, P., Salz, A.-K., and Thumann, G., Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium, J. Neurosci. Meth., 2008, vol. 173, pp. 47–58.

    Article  Google Scholar 

  48. Keefe, J.R., An analysis of urodelian retinal regeneration, J. Exp. Zool., 1973, vol. 184, pp. 185–257.

    Article  CAS  PubMed  Google Scholar 

  49. Kobuch, K., Herrmann, W.A., Framme, C., Sachs, H.G., Gabel, V.P., and Hillenkamp, J., Maintenance of adult porcine retina and retinal pigment epithelium in perfusion culture: characterization of an organotypic in vitro model, Exp. Eye Res., 2008, vol. 86, pp. 661–668.

    Article  CAS  PubMed  Google Scholar 

  50. Lahne, M., Gorsuch, R.A., Nelson, C.M., and Hyde, D.R., Culture of adult transgenic zebrafish retinal explants for live-cell imaging by multiphoton microscopy, J. Vis. Exp., 2017, vol. 120, p. 55335.

    Google Scholar 

  51. LaVail, M.M., Yasumura, D., Matthes, M.T., Lau-Villacorta, C., Unoki, K., Sung, C.H., and Steinberg, R.H., Protection of mouse photoreceptors by survival factors in retinal degenerations, Invest. Ophthalmol. Vis. Sci., 1998, vol. 39, pp. 592–602.

    CAS  PubMed  Google Scholar 

  52. Layer, P.G. and Willbold, E., Embryonic chicken retinal cells can regenerate all cell layers in vitro, but ciliary pigmented cells induce their correct polarity, Cell Tissue Res., 1989, vol. 258, pp. 233–242.

    Article  CAS  PubMed  Google Scholar 

  53. Li, Y., Zhang, Y., Qi, S., and Su, G., Retinal organotypic culture—a candidate for research on retinas, Tissue Cell, 2018, vol. 51, pp. 1–17.

    Article  PubMed  Google Scholar 

  54. Liu, L., Cheng, S.H., Jiang, L.Z., Hansmann, G., and Layer, P.G., The pigmented epithelium sustains cell growth and tissue differentiation of chicken retinal explants in vitro, Exp. Eye Res., 1988, vol. 46, pp. 801–812.

    Article  CAS  PubMed  Google Scholar 

  55. Llonch, S., Carido, M., and Ader, M., Organoid technology for retinal repair, Dev. Biol., 2018, vol. 433, pp. 132–143.

    Article  CAS  PubMed  Google Scholar 

  56. MacDonald, R.B., Randlett, O., Oswald, J., Yoshimatsu, T., Franze, K., and Harris, W.A., Müller glia provide essential tensile strength to the developing retina, J. Cell Biol., 2015, vol. 210, pp. 1075–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mack, A.F. and Fernald, R.D., Thin slices of teleost retina continue to grow in culture, J. Neurosci. Methods, 1991, vol. 36, pp. 195–202.

    Article  CAS  PubMed  Google Scholar 

  58. Mack, A.F. and Fernald, R.D., Control of vertebrate retinal cell production, Exp. Neurol., 1992, vol. 115, pp. 65–68.

    Article  CAS  PubMed  Google Scholar 

  59. Markitantova, Y.V., Avdonin, P.P., and Grigoryan, E.N., FGF2 signaling pathway components in tissues of the posterior eye sector in the adult newt Pleurodeles waltl, Biol. Bull. (Moscow), 2014, vol. 41, pp. 297–305.

    Article  CAS  Google Scholar 

  60. Martin, I., Wendt, D., and Heberer, M., The role of bioreactors in tissue engineering, Trends Biotechnol., 2004, vol. 22, pp. 80–86.

    Article  CAS  PubMed  Google Scholar 

  61. Matus, P., Cubillos, S., and Lima, L., Differential effect of taurine and serotonin on the outgrowth from explants or isolated cells of the retina, Int. J. Dev. Neurosci., 1997, vol. 15, pp. 785–793.

    Article  CAS  PubMed  Google Scholar 

  62. Mayer, E.J., Carter, D.A., Ren, Y., Hughes, E.H., Rice, C.M., Halfpenny, C.A., Scolding, N.J., and Dick, A.D., Neural progenitor cells from postmortem adult human retina, Br. J. Ophthalmol., 2005, vol. 89, pp. 102–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McMurtrey, R.J., Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids, Tissue Eng. Part C. Methods, 2016, vol. 22, pp. 221–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitashov, V.I., Mechanisms of retina regeneration in Urodele, Int. J. Dev. Biol., 1996, vol. 40, pp. 833–844.

    CAS  PubMed  Google Scholar 

  65. Mitashov, V.I., Retinal regeneration in amphibians, Int. J. Dev. Biol., 1997, vol. 41, pp. 893–905.

    CAS  PubMed  Google Scholar 

  66. Mitsuda, S., Yoshii, C., Ikegami, Y., and Araki, M., Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster,Dev. Biol., 2005, vol. 280, pp. 122–132.

    Article  CAS  PubMed  Google Scholar 

  67. Moritoh, S., Tanaka, K.F., Jouhou, H., Ikenaka, K., and Koizumi, A., Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro, PLoS One, 2010, vol. 5. e12917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moritoh, S., Komatsu, Y., Yamamori, T., and Koizumi, A., Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina, PLoS One, 2013, vol. 8. e54667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Müller, B., Wagner, F., Lorenz, B., and Stieger, K., Organotypic cultures of adult mouse retina: morphologic changes and gene expression, Invest. Ophthalmol. Vis. Sci., 2017, vol. 58, pp. 1930–1940.

    Article  CAS  PubMed  Google Scholar 

  70. Murali, A., Ramlogan-Steel, C.A., Andrzejewski, S., Steel, J.C., and Layton, C.J., Retinal explant culture: a platform to investigate human neuro-retina, Clin. Exp. Ophthalmol., 2018. https://doi.org/10.1111/ceo.13434

  71. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y., Self-formation of optic cups and storable stratified neural retina from human ESCs, Cell Stem Cell, 2012, vol. 10, pp. 771–785.

    Article  CAS  PubMed  Google Scholar 

  72. Novikova, Yu.P., Identification and activation in vitro of hidden regeneration potentialities of vertebrate retina, Cand. Sci. (Biol.) Dissertation, Moscow: Koltzov Inst. Dev. Biol., Ross. Akad. Nauk, 2010.

  73. Novikova, Yu.P., Aleinikova, K.S., Krasnov, M.S., Poplinskaya, V.A., and Grigoryan, E.N., In vitro organotypic cultivation of adult newt and rat retinas, Biol. Bull. (Moscow), 2010, vol. 37, no. 4, pp. 327–338.

    Article  Google Scholar 

  74. Ogilvie, J.M., Speck, J.D., Lett, J.M., and Fleming, T.T., A reliable method for organ culture of neonatal mouse retina with long-term survival, J. Neurosci. Methods, 1999, vol. 87, pp. 57–65.

    Article  CAS  PubMed  Google Scholar 

  75. Osborne, A., Hopes, M., Wright, P., Broadway, D.C., and Sanderson, J., Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration, Exp. Eye Res., 2016, vol. 143, pp. 28–38.

    Article  CAS  PubMed  Google Scholar 

  76. Osborne, A., Sanderson, J., and Martin, K.R., Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells, Stem Cells (Dayton, Ohio), 2018, vol. 36, pp. 65–78.

    Article  CAS  Google Scholar 

  77. Ovando-Roche, P., West, E.L., Branch, M.J., Sampson, R.D., Fernando, M., Munro, P., Georgiadis, A., Rizzi, M., Kloc, M., Naeem, A., Ribeiro, J., Smith, A.J., Gonzalez-Cordero, A., and Ali, R.R., Use of bioreactors for culturing human retinal organoids improves photoreceptor yields, Stem Cell Res. Ther., 2018, vol. 9, p. 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pinzón-Duarte, G., Kohler, K., Arango-González, B., and Guenther, E., Cell differentiation, synaptogenesis, and influence of the retinal pigment epithelium in a rat neonatal organotypic retina culture, Vis. Res., 2000, vol. 40, pp. 3455–3465.

    Article  PubMed  Google Scholar 

  79. Rattner, A., Smallwood, P.M., Williams, J., Cooke, C., Savchenko, A., Lyubarsky, A., Pugh, E.N., and Nathans, J., A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival, Neuron, 2001, vol. 32, pp. 775–786.

    Article  CAS  PubMed  Google Scholar 

  80. Reichenbach, A. and Bringmann, A., New functions of Müller cells, Glia, 2013, vol. 61, pp. 651–678.

    Article  PubMed  Google Scholar 

  81. Reichman, S., Slembrouck, A., Gagliardi, G., Chaffiol., A., Terray, A., Nanteau, C., Potey, A., Belle, M., Rabesandratana, O., Duebel, J., Orieux, G., Nandrot, E.F., Sahel, J.A., and Goureau, O., Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions, Stem Cells, 2017, vol. 35, pp. 1176–1188.

    Article  CAS  PubMed  Google Scholar 

  82. Reidel, B., Orisme, W., Goldmann, T., Smith, W.C., and Wolfrum, U., Photoreceptor vitality in organotypic cultures of mature vertebrate retinas validated by light-dependent molecular movements, Vis. Res., 2006, vol. 46, pp. 4464–4471.

    Article  CAS  PubMed  Google Scholar 

  83. Reinbold, R., Organotypic differentiation of the eye of the chick embryo in vitro, C. R. Seances. Soc. Biol. Fil., 1954, vol. 148, pp. 1493–1495.

    CAS  PubMed  Google Scholar 

  84. Sassoè-Pognetto, M., Feigenspan, A., Bormann, J., and Wässle, H., Synaptic organization of an organotypic slice culture of the mammalian retina, Vis. Neurosci., 1996, vol. 13, pp. 759–771.

    Article  PubMed  Google Scholar 

  85. Schutgens, F., Verhaar, M.C., and Rookmaaker, M.B., Pluripotent stem cell-derived kidney organoids: an in vivo-like in vitro technology, Eur. J. Pharmacol., 2016, vol. 790, pp. 12–20.

    Article  CAS  PubMed  Google Scholar 

  86. Sengupta, A., Chaffiol., A., Mace, E., Caplette, R., Desrosiers, M., Lampic, M., Forster, V., Marre, O., Lin, J.Y., Sahel, J.A., Picaud, S., Dalkara, D., and Duebel, J., Red-shifted channel rhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina, EMBO Mol. Med., 2016, vol. 8, pp. 1248–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shafaie, S., Hutter, V., Cook, M.T., Brown, M.B., and Chau, D.Y.S., In vitro cell models for ophthalmic drug development applications, Biores. Open Access, 2016, vol. 5, pp. 94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smedowski, A., Pietrucha-Dutczak, M., Maniar, R., Ajeleti, M., Matuszek, I., and Lewin-Kowalik, J., Fluorogold-labeled organotypic retinal explant culture for neurotoxicity screening studies, Oxid. Med. Cell Longev., 2018, vol. 13, p. 2487473.

    Google Scholar 

  89. Thangaraj, G., Greif, A., and Layer, P.G., Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors, Exp. Eye Res., 2011, vol. 93, pp. 556–564.

    Article  CAS  PubMed  Google Scholar 

  90. Thanos, S. and Thiel, H.J., Regenerative and proliferative capacity of adult human retinal cells in vitro, Graefes Arch. Clin. Exp. Ophthalmol., 1990, vol. 228, pp. 369–376.

    Article  CAS  PubMed  Google Scholar 

  91. Victorov, I.V., Lyjin, A.A., and Aleksandrova, O.P., A modified roller method for organotypic brain cultures: free-floating slices of postnatal rat hippocampus, Brain Res. Brain Res. Protoc., 2001, vol. 7, pp. 30–37.

    Article  CAS  PubMed  Google Scholar 

  92. Willbold, E. and Layer, P.G., A hidden retinal regenerative capacity from the chick ciliary margin is reactivated in vitro, that is accompanied by down-regulation of butyrylcholinesterase, Eur. J. Neurosci., 1992, vol. 4, pp. 210–220.

    Article  PubMed  Google Scholar 

  93. Wolburg, H., Willbold, E., and Layer, P.G., Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium, Cell Tissue Res., 1991, vol. 264, pp. 437–451.

    Article  CAS  PubMed  Google Scholar 

  94. Yanai, A., Laver, C.R., Gregory-Evans, C.Y., Liu, R.R., and Gregory-Evans, K., Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system, Tissue Eng. Part A, 2015, vol. 21, pp. 1763–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yin, X., Mead, B.E., Safaee, H., Langer, R., Karp, J.M., and Levy, O., Engineering stem cell organoids, Cell Stem Cell, 2016, vol. 18, pp. 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, S.S., Fu, X.Y., and Barnstable, C.J., Tissue culture studies of retinal development, Methods, 2002, vol. 28, pp. 439–447.

    Article  PubMed  Google Scholar 

  97. Zhang, C., Lam, T.T., and Tso, M.O., Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury, Exp. Eye Res., 2005, vol. 81, no. 6, pp. 700–709.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was performed under the section of the State Task of the Koltzov Institute of Developmental Biology (Russian Academy of Sciences) no. ST 0108-2018-0005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. P. Novikova or E. N. Grigoryan.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, Y.P., Poplinskaya, V.A. & Grigoryan, E.N. Organotypic Culturing as a Way to Study Recovery Opportunities of the Eye Retina in Vertebrates and Humans. Russ J Dev Biol 51, 31–44 (2020). https://doi.org/10.1134/S1062360420010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420010063

Keywords:

Navigation