Skip to main content
Log in

One Upward, Two Steps Down: Order of Floral Organ Initiation

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

In most angiosperms, floral organs are acropetally initiated, i.e., from the perianth upwards to the gynoecium. The review surveys examples of deviation from this typical pattern that takes place in both oligomerous and polymerous whorled flowers. The plants displaying the same non-acropetal pattern of floral development are not necessarily closely related and thus similarities in their floral structure and development should be regarded as convergences. Vice versa, representatives of the same family often show different patterns of initiation of floral organs. Flowers with the same groundplan can demonstrate either typical acropetal or non-acropetal developmental pattern. In other words, evolution of patterns of floral development is relatively homoplastic. Presumably, the repeated transitions from acropetal to non-acropetal developmental patterns (and back) readily occurred in evolution and were of a saltational nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The term phyllotaxis implies the leaf arrangement. Since homology of floral organs and leaves is yet disputable, the term organotaxis would be more pertinent for flowers. However, “phyllotaxis” describing floral organ arrangement is now rooted in literature.

REFERENCES

  1. Ajania, Y., Bull- Hereñu, K., and Classen-Bockhoff, R., Patterns of flower development in Apiaceae–Apioideae, Flora, 2016, vol. 221, pp. 38–45.

    Article  Google Scholar 

  2. Álvarez-Buylla, E.R., Ambrose, B.A., Flores-Sandoval, E., Englund, M., Garay-Arroyo, A., García-Ponce, B., de la Torre-Bárcena, E., Espinosa- Matías, S., Martinez, E., Piñeyro-Nelson, A., Engström, P., and Meyerowitz, E.M., B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae), Plant Cell, 2010, vol. 22, pp. 3543–3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambrose, B.A., Espinosa-Matías, S., Vázquez-Santana, S., Vergara-Silva, F., Martínez, E., Márquez Guzmán, J., and Álvarez-Buylla, E.R., Comparative developmental series of the Mexican triurids support a euanthial interpretation for the unusual reproductive axes of Lacandonia schismatica (Triuridaceae), Am. J. Bot., 2006, vol. 93, pp. 15–35.

    Article  Google Scholar 

  4. Anger, N., Fogliani, B., Scutt, C.P., and Gateble, G., Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the breeding system in early angiosperms, Ann. Bot., 2017, vol. 119, pp. 591–597.

    PubMed  PubMed Central  Google Scholar 

  5. Barton, M.K., Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo, Dev. Biol., 2010, vol. 341, pp. 95–113.

    Article  CAS  PubMed  Google Scholar 

  6. Bazilevskaya, N.A., Belokon’, I.P., and Shcherbakova, A.A., Kratkaya istoriya botaniki (Brief History of Botany), Moscow, 1968.

    Google Scholar 

  7. Bello, M.A., Martínez-Asperilla, A., and Fuertes-Aguilar, J., Floral development of Lavatera trimestris and Malva hispanica reveals the nature of the epicalyx in the Malva generic alliance, Bot. J. Linn. Soc., 2016, vol. 181, pp. 84–98.

    Article  Google Scholar 

  8. Bernhard, A. and Endress, P.K., Androecial development and systematics in Flacourtiaceae s.l, Plant Syst. Evol., 1999, vol. 215, pp. 141–155.

    Article  Google Scholar 

  9. Brett, J.F. and Posluszny, U., Floral development in Caulophyllum thalictroides (Berberidaceae), Can. J. Bot., 1982, vol. 60, pp. 2133–2141.

    Article  Google Scholar 

  10. Cheung, M. and Sattler, R., Early floral development of Lythrum salicaria,Can. J. Bot., 1967, vol. 45, pp. 1609–1618.

    Article  Google Scholar 

  11. Classen-Bockhoff, R., The shoot concept of the flower: still up to date?, Flora, 2016, vol. 221, pp. 46–53.

    Article  Google Scholar 

  12. Corner, E.J.H., Centrifugal stamens, J. Arnold. Arbor., 1946, vol. 27, pp. 423–437.

    Google Scholar 

  13. Cronquist, A., Phylogeny and taxonomy of the Compositae, Am. Midl. Nat., 1955, vol. 53, pp. 478–511.

    Article  Google Scholar 

  14. Cronquist, A., The Evolution and Classification of Flowering Plants, Bronx: The New York Botanic Garden, 1988.

  15. Decraene, L.P. and Smets, E.F., Complex polyandry in the Magnoliatae: definition, distribution and systematic value, Nord. J. Bot., 1992, vol. 12, pp. 621–649.

    Article  Google Scholar 

  16. Decraene, L.P. and Smets, E.F., The floral development of Neurada procumbens L. (Neuradaceae), Acta. Bot. Neerl., 1995a, vol. 45, pp. 229–241.

    Article  Google Scholar 

  17. Denay, G., Chahtane, H., Tichtinsky, G., and Parcy, F., A flower is born: an update on Arabidopsis floral meristem formation, Curr. Opin. Plant Biol., 2017, vol. 35, pp. 15–22.

    Article  PubMed  Google Scholar 

  18. Donoghue, M.J. and Doyle, J.A., Seed plant phylogeny: demise of the anthophyte hypothesis?, Curr. Biol., 2000, vol. 10, pp. R106–R109.

    Article  CAS  PubMed  Google Scholar 

  19. Doyle, J.A., Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower, Int. J. Plant Sci., 2008, vol. 169, pp. 816–843.

    Article  Google Scholar 

  20. Doyle, J.A., Molecular and fossil evidence on the origin of angiosperms, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, pp. 301–326.

    Article  CAS  Google Scholar 

  21. Eames, A., Morfologiya tsvetkovykh rastenii (Morphology of the Angiosperms), Moscow: Mir, 1964.

  22. Endress, P.K., Floral phyllotaxis and floral evolution, Bot. Jahrb. Syst., 1987, vol. 108, pp. 417–438.

    Google Scholar 

  23. Endress, P.K., Patterns of floral construction in ontogeny and phylogeny, Bot. J. Linn. Soc., 1990, vol. 39, pp. 153–175.

    Article  Google Scholar 

  24. Endress, P.K., Major traits of monocot flowers, Monocotyledons: Systematics and Evolution: In 2 vols., Wristable, Kent: Wristable Litho Printers Ltd., 1995, vol. 1, pp. 43–79.

    Google Scholar 

  25. Endress, P.K., Relationships between floral organization, architecture, and pollination mode in Dillenia (Dilleniaceae), Plant Syst. Evol., 1997, vol. 206, pp. 99–118.

    Article  Google Scholar 

  26. Endress, P.K., Angiosperm floral evolution: morphological developmental framework, Adv. Bot. Res., 2006, vol. 44, pp. 1–61.

    Article  Google Scholar 

  27. Endress, P.K. and Doyle, J.A., Floral phyllotaxis in basal angiosperms: development and evolution, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 52–57.

    Article  PubMed  Google Scholar 

  28. Endress, P.K., The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils, Ann. Mo. Bot. Gard., 2008, vol. 95, pp. 101–120.

    Article  Google Scholar 

  29. Endress, P.K. and Doyle, J.A., Reconstructing the ancestral angiosperm flower and its initial specializations, Am. J. Bot., 2009, vol. 96, pp. 22–66.

    Article  PubMed  Google Scholar 

  30. Endress, P.K., Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms, J. Syst. Evol., 2010a, vol. 48, pp. 225–239.

    Article  Google Scholar 

  31. Endress, P.K., Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony, Ann. Bot., 2010b, vol. 106, pp. 687–695.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Endress, P.K., Evolutionary diversification of the flowers in angiosperms, Am. J. Bot., 2011a, vol. 98, pp. 370–396.

    Article  PubMed  Google Scholar 

  33. Endress, P.K., Changing views of flower evolution and new questions, in Flowers on the Tree of Life, Syst. Assoc. Spec. Vol., Ser. 80, Cambridge: Cambridge Univ. Press, 2011b, pp. 120–141.

  34. Endress, P.K. and Doyle, J.A., Ancestral traits and specializations in the flowers of the basal grade of living angiosperms, Taxon, 2015, vol. 64, pp. 1093–1116.

    Article  Google Scholar 

  35. Endress, P.K., The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation, Bot. J. Linn. Soc., 2019, vol. 189, pp. 201–227.

    Article  Google Scholar 

  36. Erbar, C., Floral development of two species of Stylidium (Stylidiaceae) and some remarks on the systematic position of the family Stylidiaceae, Can. J. Bot., 1992, vol. 70, pp. 258–271.

    Article  Google Scholar 

  37. Erbar, C., Floral organ determination and ontogenetical patterns during angiosperm evolution, Int. J. Plant Dev. Biol., 2010, vol. 4, pp. 1–6.

    Google Scholar 

  38. Erbar, C. and Leins, P., Distribution of the character states “early” and “late sympetaly” within the “Sympetalae Tetracyclicae” and presumably related groups, Bot. Acta, 1996, vol. 109, pp. 427–440.

    Article  Google Scholar 

  39. Erbar, C. and Leins, P., Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae, Int. J. Plant Sci., 1997, vol. 158, pp. 49–S64.

    Article  Google Scholar 

  40. Feng, M., Fu, D.-Z., Liang, H.-X., and Lu, A.-M., Floral morphogenesis of Aquilegia L. (Ranunculaceae), Acta Bot. Sin., 1995, vol. 37, pp. 791–794.

    Google Scholar 

  41. Friedman, W.E., The meaning of Darwin’s “abominable mystery,” Am. J. Bot., 2009, vol. 96, pp. 5–21.

    Article  PubMed  Google Scholar 

  42. Friis, E.M., Pedersen, K.R., and Crane, P.R., Cretaceous angiosperm flowers: innovation and evolution in plant reproduction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 232, pp. 251–293.

    Article  Google Scholar 

  43. Friis, E.M., Crane, P.R., and Pedersen, K.R., The Early Flowers and Angiosperm Evolution, Cambridge: Cambridge Univ. Press, 2011.

    Book  Google Scholar 

  44. Ge, L.P., Lu, A.M., and Gong, C.E., Ontogeny of the fertile flower in Platycrater arguta, Int. J. Plant Sci., 2007, vol. 168, pp. 835–844.

    Article  Google Scholar 

  45. Gitzendanner, M.A., Soltis, P.S., Wong, G.K.-S., Ruhfel, B.R., and Soltis, D.E., Plastid phylogenomic analysis of green plants: a billion years of evolutionary history, Am. J. Bot., 2018, vol. 105, pp. 291–301.

    Article  PubMed  Google Scholar 

  46. Graham, S.W. and Iles, W.J., Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny, Am. J. Bot., 2009, vol. 96, pp. 216–227.

    Article  PubMed  Google Scholar 

  47. Graham, S., Gerelle, W., Jost, M., Logacheva, M., Sauquet, H., Moore, M., Les, D., Macfarlane, T. Remizowa, M., Conran, J., Wanke, S., Rudall, P.J., Sokoloff, D., and Marques, I., Connecting phylogenetic and microevolutionary views on dioecy evolution: insights from an ancient angiosperm lineage (Hydatellaceae, Nymphaeales), in Botany2019, Abstracts, abstract 1033. https://2019.botanyconference.org/engine/search/ index.php?func=detail&aid=1033.

  48. Hansen, A., Hansmann, S., Samigullin, T., Antonov, A., and Martin, W., Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous, Mol. Biol. Evol., 1999, vol. 16, pp. 1006–1009.

    Article  CAS  Google Scholar 

  49. Hardy, C.R. and Stevenson, D.W., Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae), Int. J. Plant Sci., 2000, vol. 161, pp. 551–562.

    Article  Google Scholar 

  50. Harris, E.M., Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts, Bot. Rev., 1995, vol. 61, pp. 93–278.

    Article  Google Scholar 

  51. Hayes, V., Schneider, E.L., and Carlquist, S., Floral development of Nelumbo nucifera (Nelumbonaceae), Int. J. Plant Sci., 2000, vol. 161, pp. S183–S191.

    Article  Google Scholar 

  52. Herendeen, P.S., Friis, E.M., Pedersen, K.R., and Crane, P.R., Palaeobotanical redux: how old are the angiosperms?, Nat. Plants, 2017, vol. 3, pp. 1–8.

    Article  Google Scholar 

  53. Hollender, C.A., Geretz, A.C., Slovin, J.P., and Liu, Z., Flower and early fruit development in a diploid strawberry, Fragaria vesca,Planta, 2012, vol. 235, pp. 1123–1139.

    Article  CAS  PubMed  Google Scholar 

  54. Hufford, L., Early development of androecia in Polystemonous hydrangeaceae,Am. J. Bot., 1998, vol. 85, pp. 1057–1067.

    Article  CAS  PubMed  Google Scholar 

  55. Innes, R.L., Remphrey, W.R., and Lenz, L.M., An analysis of the development of single and double flowers in Potentilla fruticosa,Can. J. Bot., 1989, vol. 67, pp. 1071–1079.

    Article  Google Scholar 

  56. Khokhryakov, A.P., Some patterns of the evolution of the flower, in Problemy filogenii vysshikh rastenii (Problems of Phylogeny of Higher Plants), Moscow: Nauka, 1974, pp. 163–172.

  57. Krasilov, V.A., Proiskhozhdenie i rannyaya evolyutsiya tsvetkovykh rastenii (The Origin and Early Evolution of Flowering Plants), Moscow: Nauka, 1989. Kwiatkowska, D., Flowering and apical meristem growth dynamics, J. Exp. Bot., vol. 59, pp. 187–201.

  58. De Laet, J., Clickemaillie, D., Jansen, S., and Smets, E., Floral ontogeny in the plumbaginaceae, J. Plant Res., 1995, vol. 108, pp. 289–304.

    Article  Google Scholar 

  59. Landau, U., Asis, L., and Eshed Williams, L., The ERECTA, CLAVATA and class III HD-ZIP Pathways display synergistic interactions in regulating floral meristem activities, PLoS One, 2015, vol. 10. e0125408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leins, P. and Erbar, C., Flower and Fruit. Morphology, Ontogeny, Phylogeny, Function and Ecology, Stuttgart: Schweizerbart Science Publishers, 2010.

    Google Scholar 

  61. Maas, F.M., Hofman-Eijer, L.B., and Hulsteijn, K., Flower morphogenesis in Rosa hybrida ‘Mercedes’ as studied by cryo-scanning electron and light microscopy. Effects on light and shoot position on a branch, Ann. Bot., 1995, vol. 75, pp. 199–205.

    Article  Google Scholar 

  62. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L.L., and Hernádez- Hernández, T., A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity, New Phytol., 2015, vol. 207, pp. 437–453.

    Article  PubMed  Google Scholar 

  63. Marazzi, B. and Endress, P.K., Patterns and development of floral asymmetry in Senna (Leguminosae, Cassiinae), Am. J. Bot., 2008, vol. 95, pp. 22–40.

    Article  PubMed  Google Scholar 

  64. Meien, S.V., Osnovy paleobotaniki. Spravochnoe posobie (Basics of Paleobotany. A Reference Guide), Moscow: Nedra, 1987.

  65. Mennes, C.B., Smets, E.F., Moses, S.N., and Merckx, V.S.F.T., New insights in the long-debated evolutionary history of Triuridaceae (Pandanales), Mol. Phylogenet. Evol., 2013, vol. 69, pp. 994–1004.

    Article  PubMed  Google Scholar 

  66. Naghiloo, S. and Classen-Bockhoff, R., Developmental changes in time and space promote evolutionary diversification of flowers: a case study in Dipsacoideae, Front. Plant Sci., 2017, vol. 8, art. 1665.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Narita, M. and Takahashi, H., A comparative study of shoot and floral development in P. tetraphylla and P. verticillata (Trilliaceae), Pl. Syst. Evol., 2008, vol. 272, pp. 67–78.

    Article  Google Scholar 

  68. Orlovich, D.A., Drinnan, A.N., and Ladiges, P.Y., Floral development in Melaleuca and Callistemon (Myrtaceae), Aust. Syst. Bot., 1998, vol. 11, pp. 689–710.

    Article  Google Scholar 

  69. Posluszny, U., Re-evaluation of certain critical relationships in the Alismatidae: floral organogenesis of Scheuchzeria palustris (Scheuchseriaceae), Am. J. Bot., 1983, vol. 70, pp. 925–533.

    Article  Google Scholar 

  70. Prenner, G., Floral ontogeny in Lathyrus latifalius (Fabaceae–Vicieae), Phyton, 2003, vol. 43, pp. 392–400.

    Google Scholar 

  71. Prenner, G., Floral ontogeny of Acacia celastrifolia: an enigmatic mimosoid legume with pronounced polyandry and multiple carpels, in Flowers on the Tree of Life, Syst. Sssoc. Spec. Vol., Ser. 80, Cambridge: Cambridge Univ. Press, 2011, pp. 256–278.

    Google Scholar 

  72. Remizowa, M.V., Sokoloff, D.D., and Rudall, P.J., Patterns of floral structure and orientation in Japonolirion, Narthecium, and Tofieldia,Aliso, 2006, vol. 22, pp. 159–171.

    Article  Google Scholar 

  73. Remizowa, M.V., Sokoloff, D.D., and Rudall, P.J., Evolutionary history of the monocot flower, Ann. Mo. Bot. Gard., 2010, vol. 97, pp. 617–645.

    Article  Google Scholar 

  74. Remizowa, M.V., Rudall, P.J., Choob, V.V., and Sokoloff, D.D., Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level, Ann. Bot., 2013, vol. 112, pp. 1553–1566.

    Article  PubMed  Google Scholar 

  75. Ren, Y., Gu, T., and Chang, H., Floral development of Dichocarpum, Thalictrum, and Aquilegia (Thalictroideae, Ranunculaceae), Plant Syst. Evol., 2011, vol. 292, pp. 203–213.

    Article  Google Scholar 

  76. Roels, P., Decraene, L.P., and Smets, E.F., A floral ontogenetic investigation of the Hydrangeaceae, Nord. J. Bot., 1997, vol. 17, pp. 235–254.

    Article  Google Scholar 

  77. Ronse De Craene, L., The evolutionary significance of homeosis in flowers: a morphological perspective, Int. J. Plant Sci., 2003, vol. 164, pp. S225–S235.

    Article  Google Scholar 

  78. Ronse De Craene, L.P., Floral development of Napoleonaea (Lecythidaceae), a deceiptively complex flower, in Flowers on the Tree of Life, Syst. Assoc. Spec. Vol., Ser. 80, Cambridge: Cambridge Univ. Press, 2011, pp. 279–265.

  79. Ronse De Craene, L., Meristic changes in flowering plants: how flowers play with numbers, Flora, 2016, vol. 221, pp. 22–37.

    Article  Google Scholar 

  80. Ronse De Craene, L., and Miller, A.G., Floral development and anatomy of Dirachma socotrana (Dirachmaceae): a controversial member of the Rosales, Plant Syst. Evol., 2004, vol. 249, pp. 111–127.

    Article  Google Scholar 

  81. Ronse Decraene, L.P. and Smets, E., The systematic relationship between Begoniaceae and Papaveraceae: a comparative study of their floral development, Bull. Jard. Bot. Belg., 1990, vol. 60, pp. 229–273.

    Article  Google Scholar 

  82. Ronse Decraene, L.P. and Smets, E., The impact of receptacular growth on polyandry in the Myrtales, Bot. J. Linn. Soc., 1991, vol. 105, pp. 257–269.

    Article  Google Scholar 

  83. Ronse Decraene, L.P., Clinckemaillie, D., and Smets, E., Stamen-petal complexes in Magnoliata, Bull. Jard. Bot. Belg., 1993, vol. 62, pp. 97–112.

    Article  Google Scholar 

  84. Ronse Decraene, L.P. and Smets, E., The distribution and systematic relevance of the androecial character polymery, Bot. J. Linn. Soc., 1993a, vol. 113, pp. 285–350.

    Article  Google Scholar 

  85. Ronse Decraene, L.P. and Smets, E., Dedoublement revisited: towards a renewed interpretation of the androecium of the Magnoliophytina, Bot. J. Linn. Soc., 1993b, vol. 113, pp. 103–124.

    Article  Google Scholar 

  86. Ronse Decraene, L.P. and Smets, E., The distribution and systematic relevance of the androecial character oligomery, Bot. J. Linn. Soc., 1995b, vol. 118, pp. 193–247.

    Article  Google Scholar 

  87. Ronse Decraene, L.P. and Smets, E., A floral ontogenetic study of some species of capparis and boscia, with special emphasis on the androecium, Bot. Jahrb. Syst., 1997, vol. 119, pp. 231–255.

    Google Scholar 

  88. Ronse Decraene, L.P., Smets, E.F., and Vanvinckenroye, P., Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae, J. Plant Res, 1998, vol. 111, p. 25.

    Article  Google Scholar 

  89. Rudall, P.J., Fascicles and filamentous structures: comparative ontogeny of morphological novelties in Triuridaceae, Int. J. Plant Sci., 2008, vol. 169, pp. 1023–1037.

    Article  Google Scholar 

  90. Rudall, P.J., All in a spin: centrifugal organ formation and floral patterning, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 108–114.

    Article  PubMed  Google Scholar 

  91. Rudall, P. J., Centrifugal stamens in a modern phylogenetic context: was corner right?, in Flowers on the Tree of Life, Syst. Assoc. Spec. Vol., Ser. 80, Cambridge: Cambridge Univ. Press, 2011, pp. 142–155.

  92. Rudall, P.J., Sokoloff, D.D., Remizowa, M.V., Conran, J.G., Davis, J.I., Macfarlane, T.D., and Stevenson, D.W., Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage, Am. J. Bot., 2007, vol. 94, pp. 1073–1092.

    Article  PubMed  Google Scholar 

  93. Rudall, P.J., Remizowa, M.V., Prenner, G., Prychid, C.J., Tuckett, R.E., and Sokoloff, D.D., Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower, Am. J. Bot., 2009, vol. 96, pp. 67–82.

    Article  PubMed  Google Scholar 

  94. Sattler, R., Organogenesis of Flowers: a Photographic Text-Atlas, Toronto: Univ. of Toronto Press, 1973.

    Google Scholar 

  95. Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J.A., Endress, P.K., Bailes, E.J., Barroso de Morais, E., Bull-Hereñu, K., Carrive, L., Chartier, M., Chomicki, G., Coiro, M., Cornette, R., El Ottra, J.H.L., Epicoco, C., Foster, C.S.P., Jabbour, F., Haevermans, A., Haevermans, T., Hernández, R., Little, S.A., Löfstrand, S., Luna, J.A., Massoni, J., Nadot, S., Pamperl, S., Prieu, C., Reyes, E., Dos Santos, P., Schoonderwoerd, K.M., Sontag, S., Soulebeau, A., Yannick Staedler, Tschan, G.F., Leung, A.W., and Schönenberger, J., The ancestral flower of angiosperms and its early diversification, Nat. Commun., 2017, vol. 8, artc. 16047.

  96. Sauquet, H., von Balthazar, M., Doyle, J.A., Endress, P.K., Magallon, S., Staedler, Y., and Schonenberger, J., Challenges and questions in reconstructing the ancestral flower of angiosperms: a reply to Sokoloff et al., Am. J. Bot., 2018, vol. 105, pp. 127–135.

    Article  PubMed  Google Scholar 

  97. Schönenberger, J., Floral structure, development and diversity in Thunbergia (Acanthaceae), Bot. J. Linn. Soc., 1999, vol. 130, pp. 1–36.

    Article  Google Scholar 

  98. Schönenberger, J. and Endress, P.K., Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications, Int. J. Plant Sci., 1998, vol. 159, pp. 446–465.

    Article  Google Scholar 

  99. Semple, J.C., Quadruple, triple, double, and simple pappi in the goldenasters, subtribe Chrysopsidinae (Asteraceae: Astereae), SIDA, Contrib. Bot., vol. 22, pp. 503–531.

  100. Sinjushin, A.A., Revisiting the floral structure and ontogeny of Trapa natans L. (Lythraceae), Wulfenia, 2018, vol. 25, pp. 57–70.

    Google Scholar 

  101. Sokoloff, D.D., Remizowa, M.V., Macfarlane, T.D., and Rudall, P.J., Classification of the early-divergent angiosperm family Hydatellaceae: one genus instead of two, four new species and sexual dimorphism in dioecious taxa, Taxon, 2008, vol. 57, pp. 179–200.

    Google Scholar 

  102. Sokoloff, D.D., Remizowa, M.V., Yadav, S.R., and Rudall, P.J., Development of reproductive structures in the sole Indian species of Hydatellaceae, Trithuria konkanensis, and its morphological differences from Australian taxa, Aust. Syst. Bot., 2010, vol. 23, pp. 217–228.

    Article  Google Scholar 

  103. Sokoloff, D.D., Remizowa, M.V., Bateman, R.M., and Rudall, P.J., Was the ancestral angiosperm flower whorled throughout?, Am. J. Bot., 2018, vol. 105, pp. 5–15.

    Article  PubMed  Google Scholar 

  104. Takhtadzhyan, A.L., Sistema i filogeniya tsvetkovykh rastenii (System and Phylogeny of Flowering Plants), Moscow: Nauka, 1966.

  105. Takhtadzhyan, A.L., Proiskhozhdenie i rasselenie tsvetkovykh rastenii (The Origin and Dispersal of Flowering Plants), Leningrad: Nauka, 1970.

  106. Taylor, E.L. and Taylor, T.N., Seed ferns from the Late Paleozoic and Mesozoic: any angiosperm ancestors lurking there?, Am. J. Bot., 2009, vol. 96, pp. 237–251.

    Article  PubMed  Google Scholar 

  107. Tsou, C. and Mori, S.A., Floral organogenesis and floral evolution of the Lecythidoideae (Lecythidaceae), Am. J. Bot., 2007, vol. 94, pp. 716–736.

    Article  PubMed  Google Scholar 

  108. Tucker, S.C., Trends in evolution of floral ontogeny in Cassia sensu stricto, Senna, and Chamaecrista (Leguminosae: Caesalpinioideae: Cassieae: Cassiinae); a study in convergence, Am. J. Bot., 1996, vol. 83, pp. 687–711.

    Article  Google Scholar 

  109. Tucker, S.C., Floral development in tribe Detarieae (Leguminosae: Caesalpinioideae): Amherstia, Brownea, and Tamarindus,Am. J. Bot., 2000, vol. 87, pp. 1385–1407.

    Article  CAS  PubMed  Google Scholar 

  110. Tucker, S.C., Floral development in legumes, Plant Physiol., 2003a, vol. 131, pp. 911–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tucker, S.C., Floral ontogeny in Swartzia (Leguminosae: Papilionoideae: Swartzieae): distribution and role of the ring meristem, Am. J. Bot., 2003b, vol. 90, pp. 1271–1292.

    Article  PubMed  Google Scholar 

  112. Tucker, S.C. and Hodges, S.A., Floral ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae), Int. J. Plant Sci., 2005, vol. 166, pp. 557–574.

    Article  Google Scholar 

  113. Uhl, N.W. and Dransfield, J., Development of the inflorescence, androecium and gynoecium with reference to palms, in Contemporary Problems in Plant Anatomy, New York: Academic, 1984, pp. 397–449.

    Google Scholar 

  114. Uhl, N.W., Floral organogenesis in palms, in Aspects of Floral Development, Berlin: J. Cramer, 1988, pp. 25–44.

    Google Scholar 

  115. Uhl, N.W. and Moore, H.E., Centrifugal stamen initiation in phytoelephantoid palms, Am. J. Bot., 1977, vol. 64, pp. 1152–1161.

    Article  Google Scholar 

  116. Uhl, N.W. and Moore, H.E., Androecial development in six polyandrous genera representing five major groups of palms, Ann. Bot., 1980, vol. 45, pp. 57–75.

    Article  Google Scholar 

  117. Volkova, O.A., Remizowa, M.V., Sokoloff, D.D., and Severova, E.E., A developmental study of pollen dyads and notes on floral development in Scheuchzeria (Alismatales: Scheuchzeriaceae), Bot. J. Linn. Soc., 2016, vol. 182, pp. 791–810.

    Article  Google Scholar 

  118. Wanntorp, L., Puglisi, C., Penneys, D., Ronse, De., and Craene, L.P., Multiplicationsof floral organs in flowers—a case study in Conostegia (Melastomataceae, Myrtales), in Flowers on the Tree of Life, Syst. Assoc. Spec. Vol., Ser. 80, Cambridge: Cambridge Univ. Press, 2011, pp. 218–235.

  119. Wettstein, R., Handbuch der Systematischen Botanik, Leipzig und Wien: Franz Deuticke, 1924.

    Google Scholar 

  120. Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M.S., Burleigh, J.G., Gitzendanner, M.A., Ruhfel, B.R., Wafula, E., Der, J.P., Graham, S.W., Mathews, S., Melkonian, M., Soltis, D.E., Soltis, P.S., Miles, N.W., Rothfels, C.J., Pokorny, L., Shaw, A.J., DeGironimo, L., Stevenson, D.W., Surek, B., Villarreal, J.C., Roure, B., Philippe, H., Chen, T., Deyholos, M.K., Baucom, R.S., Kutchan, T.M., Augustin, M.M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G.K., and Leebens-Mack, J., Phylotranscriptomic analysis of the origin and early diversification of land plants, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. E4859–E4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zagorska-Marek, B., Phyllotaxic diversity in Magnolia flowers, Acta Soc.Bot. Polon., 1994, vol. 63, pp. 117–137.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-04-00797a (basal groups of angiosperms), and the Russian Science Foundation, project no. 19-14-00055 (monocots, space of logical possibilities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Remizowa.

Ethics declarations

The author declares no conflict of interest. This article does not contain any work conducted on animal or human participants.

Additional information

Translated by A. Aver’yanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remizowa, M.V. One Upward, Two Steps Down: Order of Floral Organ Initiation. Russ J Dev Biol 50, 325–340 (2019). https://doi.org/10.1134/S1062360419060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360419060080

Keywords:

Navigation