Skip to main content
Log in

Nickel(II) Complexes with Mono(imino)pyrrole Ligands: Preparation, Structure, and MMA Polymerization Behavior

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A simplified synthetic method was initiated to prepare the corresponding nickel complexes NiL2 (IIII) with direct condensation of mono(imino)pyrroles (L1–L3) and nickel dichloride, the structures and methyl methacrylate (MMA) catalytic polymerization behavior of this series of mono(imino)pyrrole nickel complexes were presented. The mono(imine)pyrrole ligands and the corresponding nickel complexes were determined by 1H NMR, 13C NMR, IR and MS, etc. Complexes I and III were further characterized by X-ray crystal diffraction (CIF files CCDC nos. 1890965 (I), 1890964 (III)). Both of the structures showed that the ligand chelated to nickel with 2 : 1 molar ratio. The systematic studies were focused on the relationship between the catalytic behavior of these complexes for MMA polymerization and catalyst structure, reaction time, reaction temperature, and ratio of monomer with catalyst. The optimum reaction conditions of the molar ratio of monomer to catalyst is of 1200 : 1, the polymerization temperature of 100°C, time of 10 h, the nickel complex with two bulky substituents on the o-position of phenyl ring linked with imine showed excellent catalytic activities for MMA polymerization (4.791 × 104 g mol–1 h–1), high molecular weight (Mn = 65.873 × 103 g mol–1), and narrow molecular mass distribution (polymer dispersity index = 3.9877), and azodiisobutyronitrile acted as co-catalyst during MMA polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Chen, W.Y., Lu, J., Li, J., et al., China Elastomerics, 2009, vol. 19, no. 4, p. 70.

    CAS  Google Scholar 

  2. Cui, X.M., Techno-Economics Petrochem., 2016, vol. 32, no. 4, p. 27.

    Google Scholar 

  3. Zhou, C.Y., Jiang, Y.W., and Xu, B., China Plastics Industry, 2011, vol. 39, no. 9, p. 5.

    Google Scholar 

  4. Yu, F.C., Inner Mongolia Petrochem.Industry, 2015, vol. 23, no. 24, p. 63.

    Google Scholar 

  5. Zhou, C.Y., Chem. Industry, 2015, vol. 33, no. 5, p. 41.

    Google Scholar 

  6. Fabri, F., Muteale, R.B., and De, O.W.A., Polymer, 2006, vol. 47, no. 13, p. 4544.

    Article  CAS  Google Scholar 

  7. Yao, Y.M., Zhang, Y., Zhang, Z.Q., et al., Organometallics, 2003, vol. 22, no. 14, p. 2876.

    Article  CAS  Google Scholar 

  8. You, S.M., Chatha, A.A., Jabbar, A., et al., Turk. J. Chem., 2007, vol. 31, no. 4, p. 471.

    Google Scholar 

  9. Ai, W., Tong, S.T., Mo, H.L., et al., J. Zhejiang Normal Univ., 2011, vol. 34, no. 2, p. 184.

    CAS  Google Scholar 

  10. Ding, L.Q., Chen, X.L., Li, M.G., et al., Xi’an Shiyou Univ. (Natural Sci. Ed.), 2018, vol. 33, no. 2, p. 82.

  11. Johnson, L.M., Kilian, C.M., and Brookhart, M., J. Am. Chem. Soc., 1995, vol. 117, no. 23, p. 6414.

    Article  CAS  Google Scholar 

  12. Killian, C.M., Tempel, D.J., Johnson, L.K., et al., J. Am. Chem. Soc., 1996, vol. 118, no. 46, p. 11664.

    Article  CAS  Google Scholar 

  13. Kim, I., Hwang, J.M., Lee, J.K., et al., Macromol. Rapid Commun., 2003, vol. 24, no. 8, p. 508.

    Article  CAS  Google Scholar 

  14. Wang, C.M., Friedrich, S., Younkin, T.R., et al., Organometallics, 1998, vol. 17, no. 15, p. 3149.

    Article  CAS  Google Scholar 

  15. Bansleben, D.A., Friedrich, S.K., and Younkin, T.R., Transition Metal Complex Catalyst Compositions and Processes for Olefin Oligomerization and Polymerization: WO, 1998, p. 9842665.

  16. Carlini, C., Martinelli, M., Galletti, A.M.R., et al., Macromol. Chem. Phys., 2002, vol. 203, no. 10, p. 1606.

    Article  CAS  Google Scholar 

  17. Carlini, C., Martinelli, M., Gaiietiam, R., et al., Polym. Chem., 2003, vol. 41, no. 13, p. 2117.

    Article  CAS  Google Scholar 

  18. Li, X.F., Li, Y.G., Li, Y.S., et al., Organometallics, 2005, vol. 24, no. 10, p. 2502.

    Article  CAS  Google Scholar 

  19. Tang, G.R., and, Jin, G.X., Dalton Trans., 2007, vol. 34, no. 14, p. 3840.

    Article  Google Scholar 

  20. Hu, Y.J., Jiang, H.L., and Wang, H.H., Industrial Catal., 2007, vol. 15, no. 6, p. 23.

    CAS  Google Scholar 

  21. Su, B.Y., Li, Y.N., Pan, D.D., et al., Current Organic Synthesis, 2019, vol. 16, no. 3, p. 444.

    Article  CAS  Google Scholar 

  22. Su, B.Y., Wang, X.D., Wang, J.X., et al., J. Coord. Chem., 2015, vol. 68, no. 23, p. 4212.

    Article  CAS  Google Scholar 

  23. Su, B.Y., Ta, H.B., and Zhang, Q.Z., Chin. J. Catal., 2011, vol. 32, no. 9, p. 1439.

    CAS  Google Scholar 

  24. Sheldrick, G.M., SADABS, Program for Bruker Area Detector Absorption Correction, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  25. Sheldrick, G.M., SHELXS-97: Programs for Solution of Crystal Structure, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  26. Sheldrick, G.M., SHELXL-97: Programs of Refinement for Crystal Structure, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  27. Yoshida, Y., Matsui, S., Takagi, Y., et al., Organometallics, 2004, vol. 20, no. 23, p. 4793.

    Article  Google Scholar 

  28. Cuesta, L., Soler, T., and Urriolabeitia, E.P., Chem. Eur. J., 2012, vol. 18, no. 47, p. 15178.

    Article  CAS  Google Scholar 

  29. Carabineiro, S.A., Silva, L.C., Gomes, P.T., et al., Inorg. Chem., 2007, vol. 46, no. 17, p. 6880.

    Article  CAS  Google Scholar 

  30. Dawson, D.M., Walker, D.A., Thornton Pett, M., et al., Dalton Trans., 2000, vol. 41, no. 4, p. 459.

  31. Orpen, A.G., Brammer, L., Allen, F.H., et al., J. Chem. Soc., Dalton Trans., 1989, vol. S1, no. 2, p. 83.

    Google Scholar 

  32. Su, B.Y., Li, X.T., Wang, J.X., et al., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 12, p. 1053.

    Article  CAS  Google Scholar 

  33. Anderson, C.E., Batsanov, A.S., Dyer, P.W., et al., Dalton Trans., 2006, vol. 45, no. 45, p. 5362.

    Article  Google Scholar 

  34. Carabineiro, S.A., Silva, L.C., Gomes, P.T., et al., Inorg. Chem., 2007, vol. 46, no. 17, p. 6880.

    Article  CAS  Google Scholar 

  35. Imhof, W. and Wunderle, J., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, vol. 68, p. o2741.

    Article  CAS  Google Scholar 

  36. Imhof, W., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, no. 2, p. m96.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51674200); the Science and Technology Research Program of Shaanxi Province (grant nos. 2018JM2035 and 2019JM-421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B.Y., Pan, D.D., Yan, T.Y. et al. Nickel(II) Complexes with Mono(imino)pyrrole Ligands: Preparation, Structure, and MMA Polymerization Behavior. Russ J Coord Chem 46, 355–364 (2020). https://doi.org/10.1134/S1070328420050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420050073

Keywords:

Navigation