Skip to main content
Log in

Study of the Possibility of Using Salt Metathesis Reactions for the Synthesis of the Neodymium and Samarium β-Diketiminate Chalcogenide Complexes. Unexpected Reduction of Sm(III) to Sm(II)

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The possibilities of the ion exchange reactions between the neodymium(III) and samarium(III) diiodo-β-diketiminate complexes [Ln(Nacnac)I2(Тhf)2] (Ln = Nd (I), Sm (II); Nacnac is HC\(\left\{ {{\text{C}}\left( {{\text{Me}}} \right){\text{N}}\left( {{\text{2}},{\text{6}} - {{{\text{C}}}_{{\text{6}}}}{\text{H}}_{{\text{4}}}^{i}{\text{P}}{{{\text{r}}}_{{\text{2}}}}} \right)} \right\}_{{\text{2}}}^{-};\) Thf is tetrahydrofuran) and potassium mono- and dichalcogenides K2Qn (Q = S, Se, Te; n = 1, 2) in Thf are studied. The ion exchange of iodide ligands by dichalcogenide ligands does not occur under these conditions. The reaction of complex I with K2Se affords the divalent samarium complex [Sm(Nacnac)I(Thf)2] (III). The sequence of the steps leading to the formation of this complex, including the reduction of the sterically hindered bis(diketiminate) complex, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Atwood, D.A., Platt, S.M., Cotton, S.A., Harrowfield, J.M., et al., The Rare Earth Elements: Fundamentals and Applications, Chichester: Wiley, 2012.

    Google Scholar 

  2. Brennan, J.G., in The Rare Earth Elements: Fundamentals and Applications, Atwood, D.A., Ed., Chichester: Wiley, 2012, p. 215.

    Google Scholar 

  3. Kataoka, T., Tsukahara, Y., Hasegawa, Y., and Wada, Y., Chem. Commun., 2005, no. 48, p. 6038.

  4. Kar, S., Boncher, W.L., Olszewski, D., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 40, p. 13960.

    Article  CAS  PubMed  Google Scholar 

  5. Selinsky, R.S., Han, J.H., Pe, E.A.M., and Guzei, I.A., J. Am. Chem. Soc., 2010, vol. 132, no. 21, p. 15997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh, A.B., Saha, N., Sarkar, A., et al., RSC Adv., 2015, vol. 5, no. 124, p. 102818.

    Article  CAS  Google Scholar 

  7. Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, p. 171.

    Article  CAS  Google Scholar 

  8. Zhou, J., Coord. Chem. Rev., 2016, vol. 315, p. 112.

    Article  CAS  Google Scholar 

  9. Evans, W.J., Rabe, G.W., Ziller, J.W., and Doedens, R.J., Inorg. Chem., 1994, vol. 33, no. 2, p. 2719.

    Article  CAS  Google Scholar 

  10. Fieser, M.E., Johnson, C.W., Bates, E., et al., Organometallics, 2015, no. 34, p. 4387.

  11. Evans, W.J., Rabe, G.W., Ansari, A., and Ziller, J.W., Angew. Chem., 1994, vol. 859, no. 3, p. 3.

    Google Scholar 

  12. Evans, W.J., Davis, B.L., Champagne, T.M., and Ziller, J.W., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 34, p. 12678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, A.X., Hong, J., Tian, H., and Zhang, L., Angew. Chem., Int. Ed. Engl., 2017, vol. 57, no. 4, p. 1062.

    Google Scholar 

  14. Werner, D., Zhao, X., Best, S.P., et al., Chem.-Eur. J., 2017, vol. 23, no. 9, p. 2084.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, Y.Z., Bestgen, S., Gamer, M.T., et al., Angew. Chem., Int. Ed., 2017, vol. 56, no. 43, p. 13249.

    Article  CAS  Google Scholar 

  16. Kühling, M., McDonald, R., Liebing, P., Hilfert, L., et al., Dalt. Trans., 2016, vol. 45, no. 25, p. 10118.

    Article  CAS  Google Scholar 

  17. Zhang, F., Zhang, J., and Zhou, X., Inorg. Chem., 2017, vol. 56, no. 4, p. 2070.

    Article  CAS  PubMed  Google Scholar 

  18. Maron, A.L., Han, X., Xiang, L., et al., Chem.-Eur. J., 2017, vol. 23, no. 59, p. 14728.

    Article  PubMed  CAS  Google Scholar 

  19. Knight, L.K., Piers, W.E., and McDonald, R., Chem.-Eur. J., 2000, vol. 6, no. 23, p. 4322.

    Article  CAS  PubMed  Google Scholar 

  20. Corbey, J.F., Fang, M., Ziller, J.W., and Evans, W.J., Inorg. Chem., 2014, vol. 53, no. 6, p. 3099.

    Article  PubMed  CAS  Google Scholar 

  21. Kornienko, A.Y., Emge, T.J., and Brennan, J.G., J. Am. Chem. Soc., 2001, vol. 123, no. 48, p. 11933.

    Article  CAS  PubMed  Google Scholar 

  22. Huebner, L., Kornienko, A., Emge, T.J., and Brennan, J.G., Inorg. Chem., 2005, vol. 44, no. 14, p. 5118.

    Article  CAS  PubMed  Google Scholar 

  23. Coughlin, E.J., Zeller, M., and Bart, S.C., Angew. Chem., Int. Ed. Engl., 2017, vol. 56, no. 40, p. 12142.

    Article  CAS  Google Scholar 

  24. Fagin, A.A., Kuznetsova, O.V., Balashova, T.V., Cherkasov, A.V., et al., Inorg. Chim. Acta, 2018, vol. 469, p. 227.

    Article  CAS  Google Scholar 

  25. Afonin, M.Y., Sukhikh, T.S., Konokhova, A.Y., and Konchenko, S.N., Russ. J. Coord. Chem., 2018, vol. 44, no. 2, p. 147. https://doi.org/10.1134/S107032841802001X

  26. Jin, G.-X., Cheng, Y., and Lin, Y., Organometallics, 2002, vol. 18, no. 6, p. 947.

    Article  Google Scholar 

  27. Cheng, Y., Jin, G.-X., Shen, Q., and Lin, Y., J. Organomet. Chem., 2001, vol. 631, p. 94.

    Article  CAS  Google Scholar 

  28. Mironova, O.A., Sukhikh, T.S., Konchenko, S.N., and Pushkarevsky, N.A., Polyhedron, 2019, vol. 159, p. 337.

    Article  CAS  Google Scholar 

  29. Wayda, A.L., Cheng, S., and Mukerji, I., J. Organomet. Chem., 1987, vol. 330, p. C17.

    Article  CAS  Google Scholar 

  30. Yarembash, E.I. and Eliseev, A.A., Khalkogenidy redkozemel'nykh elementov: Sintez i Kristallokhimiya (Halcogenides of Rare Earth Elements: Synthesis and Crystal Structure). Moscow: Nauka, 1975.

  31. Thompson, D.P. and Boudjouk, P., Org. Chem., 1988, vol. 53, no. 9, p. 2109.

    Article  CAS  Google Scholar 

  32. Mossbauer, F. and Lss, O., Inorg. Chem., 1991, vol. 30, no. 11, p. 2540.

    Article  Google Scholar 

  33. APEX2 (version 2.0). SAINT (version 8.18c), and SAD-ABS (version 2.11), Madison: Bruker Advanced X-ray Solutions, 2000–2012.

  34. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.

    Article  CAS  Google Scholar 

  35. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.

    Google Scholar 

  36. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.

    Article  CAS  Google Scholar 

  37. Evans, W.J., Hughes, L.A., and Hanusa, T.P., J. Am. Chem. Soc., 1984, vol. 106, no. 15, p. 4270.

    Article  CAS  Google Scholar 

  38. Harder, S., Angew. Chem., Int. Ed, 2004, vol. 43, no. 20, p. 2714.

    Article  CAS  Google Scholar 

  39. Shen, X., Zhang, Y., Xue, M., and Shen, Q., Dalton Trans., 2012, vol. 41, no. 13, p. 3668.

    Article  CAS  PubMed  Google Scholar 

  40. Xue, M., Zheng, Y., Hong, Y., Yao, Y., et al., Dalton Trans., 2015, vol. 44, no. 46, p. 20075.

    Article  CAS  PubMed  Google Scholar 

  41. Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, p. 751.

    Article  Google Scholar 

  42. Hitchcock, P.B., Lappert, M.F., and Protchenko, A.V., Chem. Commun., 2005, vol. 301, no. 7, p. 951.

    Article  Google Scholar 

  43. Lide, D.L., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 2004.

    Google Scholar 

  44. Hitchcock, P.B., Khvostov, A.V., Lappert, M.F., and Protchenko, A.V., J. Chem. Soc., 2009, no. 13, p. 2383.

  45. Enemærke, R.J., Daasbjerg, K., and Skrydstrup, T., Chem. Commun., 1999, no. 4, p. 343.

  46. Evans, W.J. and Davis, B.L., Chem. Rev., 2002, vol. 102, no. 6, p. 2119.

    Article  CAS  PubMed  Google Scholar 

  47. Jiao, R., Shen, X., Xue, M., Zhang, Y., et al., Chem. Commun., 2010, vol. 46, no. 23, p. 4118.

    Article  CAS  Google Scholar 

  48. Ruspic, C., Moss, J.R., Schurmann, M., and Harder, S., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 11, p. 2121.

    Article  CAS  Google Scholar 

  49. Sekiguchi, M., Tanaka, H., Takami, N., Ogawa, A., et al., Heteroat. Chem., 1991, vol. 2, no. 3, p. 427.

    Article  CAS  Google Scholar 

  50. Shimokawa, C. and Itoh, S., Inorg. Chem., 2005, vol. 44, no. 9, p. 3010.

    Article  CAS  PubMed  Google Scholar 

  51. Morss, L.R., Chem. Rev., 1976, vol. 76, no. 6, p. 827.

    Article  CAS  Google Scholar 

  52. Evans, W.J., Gummersheimer, T.S., and Ziller, J.W., J. Am. Chem. Soc., 1995, vol. 117, no. 35, p. 8999.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Pushkarevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, O.A., Sukhikh, T.S., Konchenko, S.N. et al. Study of the Possibility of Using Salt Metathesis Reactions for the Synthesis of the Neodymium and Samarium β-Diketiminate Chalcogenide Complexes. Unexpected Reduction of Sm(III) to Sm(II). Russ J Coord Chem 46, 241–250 (2020). https://doi.org/10.1134/S1070328420030057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420030057

Keywords:

Navigation