Skip to main content
Log in

Synthesis, Crystal Structures, and Thermal Properties of Protic Metal-Containing Ionic Liquids, Diethanolammonium Halometallates: (HOCH2CH2)2NH2FeCl4 and ((HOCH2CH2)2NH2)2CoCl4

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Protic metal-containing ionic liquids with the diethanolammonium cation (HO–CH2–CH2)2\({\text{NH}}_{{\text{2}}}^{ + }\) (DEAH+) and anions \({\text{FeCl}}_{{\text{4}}}^{-}\) and \({\text{CoCl}}_{{\text{4}}}^{{{\text{2}}-}}\) (DEAHFeCl4 (I), (DEAH)2CoCl4 (II)) are synthesized. The crystal structures of compounds I and II are determined by X-ray structure analysis (CIF files CCDC nos. 1957208 (I) and 1957189 (II)). Compound I has a layered structure. The layer consists of the DEAH+ cations with the disordered system of hydrogen bonds and attached \({\text{FeCl}}_{{\text{4}}}^{-}\) anions. The structure of compound II represents a three-dimensional framework consisting of the DEAH+ cations and \({\text{CoCl}}_{{\text{4}}}^{{{\text{2}}-}}\) anions linked by hydrogen bonds. The thermal analysis shows that the melting points of compounds I (45°С) and II (55°С) are lower than 100°С, the enthalpy of melting of compound I is higher than that of compound II, and the decomposition temperature of compound II (210°С) is higher than that of compound I (128°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Staiger, C.L., Pratt, H.D., III, Leonard, J.C., et al., Proc. EESAT (16–19 Oct.2011), San Diego, 2011, p. 91.

  2. Vekariya, R.L., J. Mol. Liq., 2017, vol. 227, p. 44.

    Article  CAS  Google Scholar 

  3. Greaves, T.L. and Drummond, C.J., Chem. Rev., 2015, vol. 115, p. 11379.

    Article  CAS  Google Scholar 

  4. Dai, C., Zhang, J., Huang, C., and Lei, Z., Chem. Rev., 2017, vol. 117, p. 6929.

    Article  CAS  Google Scholar 

  5. Yoshida, Y., Tanaka, H., Saito, G., et al., Inorg. Chem., 2009, vol. 48, p. 9989.

    Article  CAS  Google Scholar 

  6. Yoshida, Y. and Saito, G., J. Mater. Chem., 2006, vol. 16, p. 1254.

    Article  CAS  Google Scholar 

  7. Hayashi, S. and Hamaguchi, H.-O., Chem. Lett., 2004, vol. 33, p. 1590.

    Article  CAS  Google Scholar 

  8. Hapiot, P. and Lagrost, C., Chem. Rev., 2008, vol. 108, p. 2238.

    Article  CAS  Google Scholar 

  9. Watanabe, M., Thomas, M.L., Zhang, S., et al., Chem. Rev., 2017, vol. 117, p. 7190.

    Article  CAS  Google Scholar 

  10. Hayes, R., Warr, G.G., and Atkin, R., Chem. Rev., 2015, vol. 115, p. 6357.

    Article  CAS  Google Scholar 

  11. Hu, J., Ma, J., Zhu, Q., et al., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, p. 5399.

    Article  CAS  Google Scholar 

  12. Hunt, P.A., Ashworth, C.R., and Matthews, R.P., Chem. Soc. Rev., 2015, vol. 44, p. 1257.

    Article  CAS  Google Scholar 

  13. Zazybin, A., Rafikova, K.H., Yu, V., et al., Russ. Chem. Rev., 2017, vol. 86, p. 1254.

    Article  CAS  Google Scholar 

  14. Dengler, J.E., Dorodian, A., and Bernhard, R., J. Organomet. Chem., 2011, vol. 696, p. 3831.

    Article  CAS  Google Scholar 

  15. Anderson, T.M., Ingersoll, D., Rose, A.J., et al., Dalton Trans., 2010, vol. 39, p. 8609.

    Article  CAS  Google Scholar 

  16. Pratt, H.D., III, Rose, A.J., Staiger, C.L., et al., Dalton Trans., 2011, vol. 40, p. 11396.

    Article  CAS  Google Scholar 

  17. Pratt, H.D., III, Leonard, J.C., Steele, L.A.M., et al., Inorg. Chim. Acta, 2013, vol. 396, p. 78.

    Article  CAS  Google Scholar 

  18. Pratt III, H.D., Ingersoll, D., Hudak, N.S., et al., J. Electroanal. Chem., 2013, vol. 704, p. 153.

    Article  CAS  Google Scholar 

  19. Zakharov, M.A., Fetisov, G.V., Veligzhanin, A.A., et al., Dalton Trans., 2015, vol. 44, p. 18576.

    Article  CAS  Google Scholar 

  20. Schaltin, S., Brooks, N.R., Binnemans, K., and Fransaer, J., J. Electrochem. Soc., 2011, vol. 158, p. D21.

    Article  CAS  Google Scholar 

  21. Brooks, N.R., Schaltin, S., van Hecke, K., et al., Chem.-Eur. J., 2011, vol. 17, p. 5054.

    Article  CAS  Google Scholar 

  22. Huang, J.-F., Luo, H., and Dai, S., J. Electrochem. Soc., 2006, vol. 153, p. J9.

  23. Balasubramanian, R., Wang, W., and Murray, R.W., J. Am. Chem. Soc., 2006, vol. 128, p. 9994.

    Article  CAS  Google Scholar 

  24. Anderson, T.M., Ingersoll, D., Rose, A.J., et al., Dalton Trans., 2010, vol. 39, p. 8609.

    Article  CAS  Google Scholar 

  25. Yoshida, Y., Tanaka, H., Saito, G., et al., Inorg. Chem., 2009, vol. 48, p. 9989.

    Article  CAS  Google Scholar 

  26. Ortiz-Acosta, D., Purdy, G.M., Scott, B., et al., ECS Trans., 2009, vol. 16, p. 171.

    Article  CAS  Google Scholar 

  27. Katayama, Y., Konishiike, I., Miura, T., and Kishi, T., J. Power Sources, 2002, vol. 109, p. 327.

    Article  CAS  Google Scholar 

  28. Wang, J., Yao, H., Nie, Y., et al., J. Mol. Liq., 2012, vol. 169, p. 152.

    Article  CAS  Google Scholar 

  29. Sun, X., Zhao, S., and Zhang, M., Petrol. Sci., 2005, vol. 2, p. 77.

    CAS  Google Scholar 

  30. Small, L.J., Pratt, H.D., III, Staiger, C.L., and Anderson, T.M., Adv. Sustain. Syst., 2017, vol. 1, no. 1700066.

  31. Estager, J., Holbrey, J.D., and Swadzba-Kwasny, M., Chem. Soc. Rev., 2014, vol. 43, p. 847.

    Article  CAS  Google Scholar 

  32. Wang, L.-J. and Lin, C.-H., Mini-Rev. Org. Chem., 2012, vol. 9, p. 223.

    Article  CAS  Google Scholar 

  33. Petrović, Z.D., Hadjipavlou-Litina, D., Pontiki, E., et al., Bioorg. Chem., 2009, vol. 37, p. 162.

    Article  Google Scholar 

  34. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.

    Article  CAS  Google Scholar 

  35. Farrugia, L.J., J. Appl. Crystallogr., 1999, vol. 32, p. 837.

    Article  CAS  Google Scholar 

  36. Diamond. Crystal and Molecular Structure Visualization, Bonn: Crystal Impact, 2014.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-08-00672a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zakharov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, M.A., Filatova, Y.V., Bykov, M.A. et al. Synthesis, Crystal Structures, and Thermal Properties of Protic Metal-Containing Ionic Liquids, Diethanolammonium Halometallates: (HOCH2CH2)2NH2FeCl4 and ((HOCH2CH2)2NH2)2CoCl4. Russ J Coord Chem 46, 268–275 (2020). https://doi.org/10.1134/S1070328420040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328420040077

Keywords:

Navigation