Skip to main content
Log in

Optimization of Solid-Phase Synthesis of the 1-40 Beta-Amyloid and Preparation of Antibodies Revealing It under Immunoblotting Conditions

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The solid-phase synthesis and purification of the 1-40 sequence of the human beta-amyloid were optimized, resulting in a preparation of a product with a high yield and homogeneity more than 95%. The synthetic peptide is capable of forming oligomers. This fact was confirmed by electrophoresis in the polyacrylamide gel with a subsequent immunoblotting and fluorescence spectrophotometry using the thioflavin T dye. An available method for a production of the highly specific anti-beta-amyloid antibodies with a high titer was developed. These antibodies recognized both monomeric and oligomeric forms of the 1-40 peptide of beta-amyloid under the immunoblotting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Haass, C. and Selkoe, D.J., Cell, 1993, vol. 75, pp. 1039–42.

  2. Glenner, G.G. and Wong, C.W., Biochem. Biophys. Res. Commun., 2012, vol. 425, pp. 534–539.

    Article  CAS  Google Scholar 

  3. Selkoe, D.J. and Hardy, J., EMBO Mol. Med., 2016, vol. 8, pp. 595–608.

    Article  CAS  Google Scholar 

  4. O’Brien, R.J. and Wong, P.C., Annu. Rev. Neurosci., 2011, vol. 34, pp. 185–204.

    Article  Google Scholar 

  5. Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., Levey, A.I., Krafft, G.A., Levy, E., Checler, F., Glabe, C., Bilker, W., Abel, T., Schmeidler, J., and Ehrlich, M.E., Ann. Neurol., 2010, vol. 68, pp. 220–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kayed, R. and Lasagna-Reeves, C.A., J. Alzheimers Dis., 2013, vol. 33, suppl. 1, pp. S67–S78.

    Article  Google Scholar 

  7. Choi, J.W., Kim, H.Y., Jeon, M., Kim, D.J., and Kim, Y., Amyloid, 2012, vol. 19, pp. 133–137.

    Article  CAS  Google Scholar 

  8. Tickler, A.K., Barrow, C.J., and Wade, J.D., J. Pept. Sci., 2001, vol. 7, pp. 488–494.

    Article  CAS  Google Scholar 

  9. Sidorova, M.V., Molokoedov, A.S., Ovchinnikov, M.V., Bespalova, Zh.D., and Bushuev, V.N., Russ. J. Bioorg. Chem., 1997, vol. 23, pp. 41–50.

    Google Scholar 

  10. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A.M., Temussi, P.A., and Picone, D., Eur. J. Biochem., 2002, vol. 269, pp. 5642–5648.

    Article  CAS  Google Scholar 

  11. Condron, M.M., Monien, B.H., and Bitan, G., Open Biotechnol. J., 2008, vol. 2, pp. 87–93.

    Article  CAS  Google Scholar 

  12. Kok, W.M., Scanlon, D.B., Karas, J.A., Miles, L.A., Tew, D.J., Parker, M.W., Barnham, K.J., and Hutton, C.A., Chem. Commun. (Camb.), 2009, vol. 41, pp. 6228–6230.

    Article  Google Scholar 

  13. Kreutzer, A.G., Yoo, S., Spencer, R.K., and Nowick, J.S., J. Am. Chem. Soc., 2017, vol. 139, pp. 966–975.

    Article  CAS  Google Scholar 

  14. Benilova, I., Karran, E., and De Strooper, B., Nat. Neurosci., 2012, vol. 15, pp. 349–357.

    Article  CAS  Google Scholar 

  15. Itkin, A., Dupres, V., Dufrene, Y. F., Bechinger, B., Ruysschaert, J.-M., and Raussens, V., PLoS One, 2011, vol. 6, no. 3, e18 250.

    Article  Google Scholar 

  16. Xue, C., Lin, T.Y., Chang, D., and Guo, Z., R. Soc. Open Sci., 2017, vol. 4, no. 1, p. 160 696.

    Article  Google Scholar 

  17. Pfaff, E., Mussgay, M., Bohm, H.O., Schulz, G.E., and Schaller, H., EMBO J., 1982, vol. 1, no. 7, pp. 869–874.

    Article  CAS  Google Scholar 

  18. Akhidova, E.V., Volkova, T.D., Koroev, D.O., Kim, Ia.S., Filatova, M.P., Vladimirova, N.M., Karmakova, T.A., Zavalishina, L.E., Andreeva, Iu.Iu., and Vol’pina, O.M., Russ. J. Bioorg. Chem., 2010, vol. 36, no. 2, pp. 164–171.

    Article  CAS  Google Scholar 

  19. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-04-00624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Volkova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Onoprienko

Abbreviations: Аβ, beta-amyloid; Fmoc, 9-fluorenylmethoxycarbonyl; KLH, keyhole limpet hemocyanine; PBS, the phosphate buffered saline that contained 137 mM NaCl, 2.7 mM KCl, 8 mM NaH2PO4, and 1.5 mM KH2PO4 (рН 7.4); TBTU, tetrafluoroborate of О-(benzotriazol-1-yl)-N,N,N',N'-tetramethylurea; ThT, the thioflavin fluorescent dye; Trt, trityl; Pbf, 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl.

Corresponding author: phone: +7 (495) 336-57-77; e-mail: tdvol@mx.ibch.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, T.D., Koroev, D.O., Kamynina, A.V. et al. Optimization of Solid-Phase Synthesis of the 1-40 Beta-Amyloid and Preparation of Antibodies Revealing It under Immunoblotting Conditions. Russ J Bioorg Chem 46, 217–222 (2020). https://doi.org/10.1134/S1068162020020181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020020181

Keywords:

Navigation