Skip to main content
Log in

Simulation and Optimization of Wood Biomass Gasification Regimes in a Flow of Steam-Oxygen Blast

  • Special Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Plant biomass (such as wood, agricultural and logging waste) is considered a raw material with better environmental characteristics than fossil fuels. The main prospects for bioenergy are associated with combustion and gasification in small power systems, including as part of hybrid power plants. To increase the efficiency of gasification processes, an oxygen-enriched gasifying agent is often used, as well as fine grinded fuel (to intensify transport processes and chemical transformations). Thermodynamic estimates show the possibility of achieving the efficiency of the gasification at the level of 0.8–0.9, however, the experimentally achieved values rarely exceed 0.7. In this work, using mathematical modeling, we investigated the possibility of increasing the efficiency of the biomass gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sahu, S.G., Chakrabotry, N., and Sarkas, P., Renewable Sustainable Energy Rev., 2014, vol. 39, pp. 575–586. https://doi.org/10.1016/j.rser.2014.07.106

    Article  CAS  Google Scholar 

  2. Bhuiyan, A.A., Blicblau, A.S., and Sadrul Islam, A.K.M., Naser J, J. Energy Inst., 2018, vol. 91, no. 1, pp. 1–18. https://doi.org/10.1016/j.joei.2016.10.006

    Article  CAS  Google Scholar 

  3. Roni, M.S., Chowdhury, S., Mamun, S., Marufuzzaman, M., Lein, W., and Johnson S., Renewable Sustainable Energy Rev., 2017, vol. 78, pp. 1089–1101. https://doi.org/10.1016/j.rser.2017.05.023

    Article  CAS  Google Scholar 

  4. Sansaniwal, S.K., Rosen, M.A., and Tyagi, S.K., Renewable Sustainable Energy Rev., 2017, vol. 80, pp. 23–43. https://doi.org/10.1016/j.rser.2017.05.215

    Article  Google Scholar 

  5. Castaldi, M., van Deventer, J., Lavoie, J.M., Legrand, J., Nzihou, A., Pontikes, Y., Py, X., Vandecasteele, C., and Vasuedevan, P.T., Waste Biomass Valorization, 2017, vol. 8, no. 6, pp. 1875–1884. https://doi.org/10.1007/s12649-017-0049-0

    Article  CAS  Google Scholar 

  6. Bisht, A.S. and Thakur, N.S, Renewable Energy Focus, 2019, vol. 28, pp. 112–126. https://doi.org/10.1016/j.ref.2018.12.004

    Article  Google Scholar 

  7. Ahrenfeldt, J., Thomsen, T.P., Henriksen, U., and Claussen, L.R, Appl. Thermal Eng., 2013, vol. 50, no. 2, pp. 1407–1417. https://doi.org/10.1016/j.applthermaleng.2011.12.040

    Article  CAS  Google Scholar 

  8. Gonzalez, A., Riba, J.-R., and Rius, A., Sustainability, 2015, vol. 7, pp. 12787–12806. https://doi.org/10.3390/su70912787

    Article  Google Scholar 

  9. Indrawan, N., Thapa, S., Bhoi, P.R., Huhnke, R.L., and Kumar, A., Energy, 2018, vol. 162, pp. 764–775. https://doi.org/10.1016/j.energy.2018.07.169

    Article  CAS  Google Scholar 

  10. Kozlov, A., Marchenko, O., and Solomin, S., Energy Procedia, 2019, vol. 158, pp. 1004–1008. https://doi.org/10.1016/j.egypro.2019.01.244

    Article  CAS  Google Scholar 

  11. Reed, T.B. and Das, A., Handbook of Biomass Downdraft Gasifier Engine Systems, Golden (Colorado): The Biomass Energy Foundation Press, 1998.

    Google Scholar 

  12. Kislov, V.M., Zholudev, A.F., Kislov, M.B., and Salgansky, E.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 1, pp. 57–63. https://doi.org/10.1134/S1070427219010087

    Article  CAS  Google Scholar 

  13. Gomez-Barea, A., Leckner, B., Perales, A.V., Nilsson, S., and Cano, D.F, Appl. Thermal Eng., 2013, vol. 50, pp. 1453–1462. https://doi.org/10.1016/j.applthermaleng.2011.12.025

    Article  CAS  Google Scholar 

  14. Weiland, F., Hedman, H., Marklund, M., Wiinikka, H., Ohrman, O., and Gebart, R., Energy Fuels, 2013, vol. 27, pp. 932–941. https://doi.org/10.1021/ef301803s

    Article  CAS  Google Scholar 

  15. Gadsboll, R.O., Clausen, L.R., Thomsen, T.P., Ahrenfeldt, J., and Henriksen, U.B., Energy, 2019, vol. 166, pp. 939–950. https://doi.org/10.1016/j.energy.2018.10.144

    Article  CAS  Google Scholar 

  16. Xiao, Y., Xu, S., Song, Y., Shan, Y., Wang, C., and Wang, G., Fuel Processing Technol., 2017, vol. 165, pp. 54–61. https://doi.org/10.1016/j.fuproc.2017.05.013

    Article  CAS  Google Scholar 

  17. Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N., and Anthony, E.J., Progress Energy Combust. Sci., 2017, vol. 61, pp. 189–248. https://doi.org/10.1016/j.pecs.2017.04.001

    Article  Google Scholar 

  18. Perkins, G., Bhaskar, T., and Konarova, M., Renewable Sustainable Energy Rev., 2018, vol. 90, pp. 292–315. https://doi.org/10.1016/j.rser.2018.03.048

    Article  CAS  Google Scholar 

  19. Baranovskiy, N.V., Proc. of SPIE — The International Society for Optical Engineering, 2015, vol. 9680, paper no. 96805L. https://doi.org/10.1117/12.2205194

    Article  Google Scholar 

  20. Marchenko, O.V. and Solomin, S.V., KhKhI vek. Tekhnosfernaya bezopasnost’, 2019, vol. 4, no. 1, pp. 20–29. https://doi.org/10.21285/2500-1582-2019-1-20-29

    Article  Google Scholar 

  21. Prins, M.J., Ptasinski, K.J., and Janssen, F.J.J.G, Energy, 2007, vol. 32, pp. 1248–1259. https://doi.org/10.1016/j.energy.2006.07.017

    Article  CAS  Google Scholar 

  22. Svishchev, D.A., Kozlov, A.N., Donskoy, I.G., and Ryzhkov, A.F., Fuel, 2016, vol. 168, pp. 91–106. https://doi.org/10.1016/j.fuel.2015.11.066

    Article  CAS  Google Scholar 

  23. Sansaniwal, S.K., Pal, K., Rosen, M.A., and Tyagi, S.K., Renewable Sustainable Energy Rev., 2017, vol. 72, pp. 363–384. https://doi.org/10.1016/j.rser.2017.01.038

    Article  CAS  Google Scholar 

  24. Kobayashi, N., Tanaka, M., Piao, G., Kobayashi, J., Hatano, S., Itaya, Y., and Mori, S., Waste Management, 2009, vol. 29, no. 1, pp. 245–251. https://doi.org/10.1016/j.wasman.2008.04.014

    Article  PubMed  Google Scholar 

  25. Schneider, J., Grube, C., Herrmann, A., and Ronsch, S., Fuel Processing Technol., 2016, vol. 152, pp. 72–82. https://doi.org/10.1016/j.fuproc.2016.05.047

    Article  CAS  Google Scholar 

  26. Hernandez, J.J., Aranda, G., Barba, J., and Mendoza, J.M., Fuel Processing Technol., 2012, vol. 99, pp. 43–55. https://doi.org/10.1016/j.fuproc.2012.01.030

    Article  CAS  Google Scholar 

  27. Zhao, Y., Sun, S., Zhou, H., Sun, R., Tian, H., Luan, J., and Quan, J., Fuel Processing Technol., 2010, vol. 91, pp. 910–914. https://doi.org/10.1016/j.fuproc.2010.01.012

    Article  CAS  Google Scholar 

  28. Qin, K., Jensen, P.A., Lin, W., and Jensen A.D., Energy & Fuels, 2012, vol. 26, pp. 5992–6002. https://doi.org/10.1021/ef300960x

    Article  CAS  Google Scholar 

  29. Goktepe, B., Umeki, K., and Gebart, R., Fuel Processing Technol., 2016, vol. 141, pp. 99–105. https://doi.org/10.1016/j.fuproc.2015.06.038

    Article  CAS  Google Scholar 

  30. Wiinikka, H., Toth, P., Jansson, K., Molinder, R., Brostrom, M., Sandstrom, L., Lighty, J.S., and Weiland, F., Combust. and Flame, 2018, vol. 189, pp. 240–256. https://doi.org/10.1016/j.combustflame.2017.10.025

    Article  CAS  Google Scholar 

  31. Risberg, M., Ohrman, O.G.W., Gebart, B.R., Nilsson, P.T., Gundmunsson, A., and Sanati, M., Fuel, 2014, vol. 116, pp. 751–759. https://doi.org/10.1016/j.fuel.2013.08.008

    Article  CAS  Google Scholar 

  32. Kostyunin, V.V. and Potapov, V.N., Sovremennaya Nauka: Issledovaniya, Idei, Rezul'taty, Tekhnologii, 2014, no. 1 (14), pp. 82–88.

    Google Scholar 

  33. Andersson, J., Umeki, K., Furusjo, E., Kirtania, K., and Weiland, F., Energy Technol., 2017, vol. 5, pp. 1–12. https://doi.org/10.1002/ente.201600760

    Article  CAS  Google Scholar 

  34. Monaghan, R.F.D. and Ghoniem, A.F., Fuel, 2012, vol. 91, pp. 61–80. https://doi.org/10.1016/j.fuel.2011.07.015

    Article  CAS  Google Scholar 

  35. Billaud, J., Valin, S., Peyrot, M., and Salvador, S., Fuel, 2016, vol. 166, pp. 166–178. https://doi.org/10.1016/j.fuel.2015.10.046

    Article  CAS  Google Scholar 

  36. Chen, W.-H., Chen, C.-J., Hung, C.-I., Shen, C.-H., and Hsu, H.-W., Appl. Energy, 2013, vol. 112, pp. 421–430. https://doi.org/10.1016/j.apenergy.2013.01.034

    Article  CAS  Google Scholar 

  37. Adeyemi, I., Janajreh, I., Arink, T., and Ghenai, C., Appl. Energy, 2017, vol. 185. Pt 2, pp. 1007–1018. https://doi.org/10.1016/j.apenergy.2016.05.119

    Article  Google Scholar 

  38. Ku, X., Wang, J., Jin, H., and Lin, J., Renewable Energy, 2019, vol. 139, pp. 781–795. https://doi.org/10.1016/j.renene.2019.02.113

    Article  CAS  Google Scholar 

  39. Gao, X., Zhang, Y., Bao, F., Li, B., Zhao, Y., Ke, C., and Jiang, B., Chem. Eng. Processing—Process Intensification, 2018, vol. 125, pp. 280–289. https://doi.org/10.1016/j.cep.2018.02.017

    Article  CAS  Google Scholar 

  40. Kaganovich, B.M., Keiko, A.V., and Shamansky, V.A., Advances in Chemical Engineering, vol. 39. Thermodynamics and Kinetics of Complex Systems, New York: Elsevier, 2010. https://doi.org/10.1016/S0065-2377(10)39001-6

    Book  Google Scholar 

  41. Donskoy, I.G., Shamansky, V.A., Kozlov, A.N., Svishchev, D.A., Combust. Theory and Modelling, 2017, vol. 21, no. 3, pp. 529–559. https://doi.org/10.1080/13647830.2016.1259505

    Article  CAS  Google Scholar 

  42. Weiland, F., Wiinikka, H., Hedman, H., Wennebro, J., Pettersson, E., and Gebart, R., Fuel, 2015, vol. 153, pp. 510–519. https://doi.org/10.1016/j.fuel.2015.03.041

    Article  CAS  Google Scholar 

  43. Kumar, M. and Ghoniem, A.F., Fuel, 2013, vol. 108, pp. 565–577. https://doi.org/10.1016/j.fuel.2013.02.009

    Article  CAS  Google Scholar 

  44. van der Drift, A., Boerrigter, H., Coda, B., Cieplik, M.K., and Hemmes K., Entrained Flow Gasification of Biomass. Ash Behaviour, Feeding Issues, and System Analyses, Report ECN-C-04-039, 2004.

  45. Sircar, I., Sane, A., Wang, W., and Gore, J.S., Fuel, 2014, vol. 134, pp. 554–564. https://doi.org/10.1016/j.fuel.2014.06.015

    Article  CAS  Google Scholar 

  46. Donskoy, I.G., Solid Fuel Chem., 2019, vol. 53, no. 2, pp. 113–119. https://doi.org/10.3103/S0361521919020046

    Article  CAS  Google Scholar 

  47. Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L.I., Jones, J.M., and Nimmo, W., Fuel, 2015, vol. 141, pp. 275–284. https://doi.org/10.1016/j.fuel.2014.10.021

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the сentre of collective usage “High-Temperature Circuit” ISP SB RAS.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-24047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Donskoi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskoi, I.G. Simulation and Optimization of Wood Biomass Gasification Regimes in a Flow of Steam-Oxygen Blast. Russ J Appl Chem 93, 519–526 (2020). https://doi.org/10.1134/S1070427220040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220040060

Keywords:

Navigation