Skip to main content
Log in

Statistical Comparative Study of the Gamma Dose Rate and Associated Risk Assessment in Rural and Urban Areas of Durg District, Chhattisgarh, India

  • Published:
Radiochemistry Aims and scope

Abstract

The gamma dose rates in rural and urban areas of Durg were compared. The statistical study was made to compare the outdoor and indoor gamma dose rates for the rural and urban areas. The lifetime effective doses for the rural and urban areas were found to be from 64.4 ± 2.6 to 105.4 ± 4.2 and from 82.2 ± 3.3 to 92.9 ± 3.7 mSv, respectively. The excess lifetime cancer risk ranging from 5.2 × 10–3 to 5.3 × 10–3 was found in several rural areas. The maximum values of the indoor gamma dose rate observed in the rural and urban areas are 253 ± 10 and 224 ± 9 nSv/h, respectively, which is higher than the typical range (10–200 nSv/h) reported by UNSCEAR. The measured gamma dose rate for terrestrial is compared to the reported values of radiation near uranium mines in India and in the world. The effective organ dose is higher than the recommended limit of 1.0 mSv/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Census Data, Meta Data, Ministry of Home Affair, Government of India, 2011, Available at http://www.censusindia.gov.in.

  2. Rao, N.S., Parial, K., Koide, H., and Sengupta, D., Curr. Sci., 2015, vol. 109, no. 3, p. 600..

    CAS  Google Scholar 

  3. Hazrati, S., Baghi, A.N., Sadeghi, H., Barak, M., Zivari, S., and Rahimzadeh, S., J. Environ. Health Sci. Eng., 2012, vol. 9, no. 1, p. 1. https://doi.org/10.1186/1735-2746-9-1

    Article  CAS  Google Scholar 

  4. Ononugbo, C.P., Avwiri, G.O., and Tutumeni, G., Int. Res. J. Pure Appl. Phys., 2015, vol. 3, no. 2, p. 18.

    Google Scholar 

  5. Muhammad, R., Saeed, U.R., Muhammad, B., Wajid, A., Iftikhar, A., Khursheed, A.L., and Khalil, A.M., J. Radiat. Res. Appl. Sci., 2014, vol. 7, p. https://doi.org/10.1016/j.jrras.2013.11.005

    Article  Google Scholar 

  6. Ionizing radiation. Sources and biological effects, UNSCEAR Report to the General Assembly with Scientific Annexes, New York: United Nations, 2000

  7. Sources and effects of ionizing radiation, UNSCEAR Report, New York: United Nations, 1993

  8. Jwanbot, D.I., Izam, M.M., Nyam, G.G., and Yusuf, M., Asian Online J. Publ. Group, 2014, vol. 1, no. 1, p. 5.

    Google Scholar 

  9. Karunakara, N., Yashodhara, I., Kumara, K.S., Tripathi, R.M., Menon, S.N., Kadam, S., and Chougaonkar, M.P., Results Phys., 2014, vol. 4, p. https://doi.org/10.1016/j.rinp.2014.02.001

    Article  Google Scholar 

  10. Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., and Karahan, G., J. Environ. Radioact., 2009, vol. 100, p. 49.

    Article  CAS  Google Scholar 

  11. Yasar, K., Halim, T., Cafer, M.Y., and Ugur, C., Human Ecol. Risk Assess.: Int. J., 2015, vol. 1, no. 8, p. 2077.

    Google Scholar 

  12. Avwiri, G.O., Nwaka, B.U., and Ononugbo, C.P., Int. J. Emerg. Res. Manag. Technol., 2016, vol. 5, no. 9, p. 1.

    Google Scholar 

  13. Sharma, P., Meher, P.K., and Mishra, K.P., J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 4, p. 595.

    Article  Google Scholar 

  14. Pashazadeh, A.M., Aghajani, M., Nabipour, I., and Assadi, M., J. Environ. Health Sci. Eng., 2014, vol. 12, no. 4, p. 1. https://doi.org/10.1186/2052-336X-12-4

    Article  CAS  Google Scholar 

  15. Ezekiel, A.O., J. Taibah Univ. Sci., 2017, vol. 11, p. 367. https://doi.org/10.1016/j.jtusci.2016.03.007

    Article  Google Scholar 

  16. Monica, S., Prasad, V.A.K., Soniya, S.R., and Jojo, P.J., Int. J. Pure Appl. Phys., 2017, vol. 13, p. 179.

    Google Scholar 

  17. Asere, A.M. and Ajayi, I.R., J. Environ. Sci., Toxicol. Food Technol., 2017, vol. 11, no. 5, p. 49. https://doi.org/10.9790/2402-1105024952

    Article  CAS  Google Scholar 

  18. Durg District Administration, Government of Chhattisgarh. Available at http://durg.gov.in

  19. Mukherjee, A., Ray, R.K., Tewari, D., Ingle, V.K., Sahoo, B.K., and Khan, M.W.Y., J. Earth System Sci., 2014, vol. 123, p. 617. https://doi.org/10.1007/s12040-014-0418-z

    Article  CAS  Google Scholar 

  20. Kumar, T., Gautam, A.K., and Kumar, T., Water Resource Manag., 2014, vol. 28, p. https://doi.org/10.1007/s11269-014-0663-6

    Article  Google Scholar 

  21. Jindal, M.K., Sar, S.K., Singh, S., and Arora, A., J. Radioanal. Nucl. Chem., 2018, vol. 317, no. 1, p. 387. https://doi.org/10.1007/s10967-018-5846-9

    Article  CAS  Google Scholar 

  22. Health risk from exposure to low levels of ionizing radiation, Report of the National Research Council of the National Academies, BEIR VII, Phase 2, Washington, DC: National Academies, 2006

  23. Cinelli, G., Gruber, V., Felice, L.D., Bossew, P., Hernandez-Ceballos, M.A., Tollefsen, T., Mundigl, S., and Cort, M.D., J. Maps, 2017, vol. 13, no. 2, p. 812. https://doi.org/10.1080/17445647.2017.1384934

    Article  Google Scholar 

  24. Radiation Risk in Perspective, Position Statement of the Heath Physics Society, 2016

  25. Age-dependent doses to members of the public from intake of radionuclides, part 5: Compilation of ingestion and inhalation coefficients, ICRP Publication 72, Oxford: Pergamon, 1996

  26. Darwish, D.A.E., Abul-Nasr, K.T.M., and El-Khayatt, A.M., J. Radiat. Res. Appl. Sci., 2015, vol. 8, no. 1, p. 17. https://doi.org/10.1016/j.jrras.2014.10.003

    Article  CAS  Google Scholar 

  27. Tripathi, R.M., Sahoo, S.K., Mohapatra, S., Patra, A.C., Lenka, P., Dubey, J.S., Jha, V.N., and Puranik, V.D., Radiat. Prot. Dosim., 2012, vol. 150, no. 4, p. 458. https://doi.org/10.1093/rpd/ncr431

    Article  CAS  Google Scholar 

  28. Duggal, V., Rani, A., Mehra, R., and Ramola, R.C., Radiat. Prot. Dosim., 2014, vol. 158, no. 2, p. 235. https://doi.org/10.1093/rpd/nct199

    Article  CAS  Google Scholar 

  29. Rana, B.K., Tripathi, R.M., Meena, J.S., Sahoo, S.K., Topno, R., Shukla, A.K., and Puranik, V.D., J. Radioanal. Nucl. Chem., 2011, vol. 290, p. 347. https://doi.org/10.1007/s10967-011-1294-5

    Article  CAS  Google Scholar 

  30. Vandenhove, H., Sweeck, L., Mallants, D., Vanmarcke, H., Aitkulov, A., Sadyrov, O., Savosin, M., Tolongutov, B., Mirzachev, M., Clerc, J.J., Quarch, H.,and Aitaliev, A, J. Environ. Radioact., 2006, vol. 88, no. 2, p. https://doi.org/10.1016/j.jenvrad.2006.01.00.

    Article  CAS  Google Scholar 

  31. Tripathi, R.M., Sahoo, S.K., Jha, V.N., Kumar, R., Shukla, A.K., Puranik, V.D., and Kushwaha, H.S., Radiat. Prot. Dosim., 2011, vol. 147, no. 4, p. 565. https://doi.org/10.1093/rpd/ncq496

    Article  CAS  Google Scholar 

  32. Sar, S.K., Sahu, M., Singh, S., Diwan, V., Jindal, M., and Arora, A., J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 3, p. 2339. https://doi.org/10.1007/s10967-017-5587-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Jindal.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, M.K., Sar, S.K. Statistical Comparative Study of the Gamma Dose Rate and Associated Risk Assessment in Rural and Urban Areas of Durg District, Chhattisgarh, India. Radiochemistry 62, 275–287 (2020). https://doi.org/10.1134/S1066362220020186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220020186

Keywords:

Navigation