Skip to main content
Log in

Efficiency of Radiolabeled Silver Nanoflowers as Theranostic Agent

  • Published:
Radiochemistry Aims and scope

Abstract

Silver nanoflowers (Ag1 and Ag2 NFws) were prepared using combined solid state–polyol reduction methods. The nanoflowers were characterized by X-ray diffraction, scanning electron microscopy, and UV-visible spectroscopy. A new mechanism of Ag NFw formation, based on microstructural investigation, is described. According to this mechanism, Ag1 NFws have a lower free surface energy and are more flexible than Ag2 NFws. Both Ag1 and Ag2 NFws were radiolabeled by adsorption of iodine-125 with the maximum radiochemical yield of 95.6 ± 0.5 and 58.4 ± 0.3%, respectively. The stability and biodistribution of 125I-Ag1 NFws were studied. Ag1 NFws were shown to be localized in the septic inflamed muscle to a greater extent than in a normal muscle. Ag1 NFws show promise as a theranostic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Yang, P., Zheng, J., Xu, Y., Zhang, Q., and Jiang, L., Adv. Mater., 2016, vol. 28, p. 10508.

    Article  CAS  Google Scholar 

  2. Chang, Y.-H., Liu, C., Rouvimov, S., Luoc, T., and Feng, S.-P., Chem. Commun., 2017, vol. 53, p. 6752.

    Article  CAS  Google Scholar 

  3. Zia, F., Ghafoor, N., Iqbal, M., and Mehboob, S., Appl. Nanosci., 2016, vol. 6, p. 1023.

    Article  CAS  Google Scholar 

  4. Tao, T., Chen, Y., Chen, Y., Fox, D.S., Zhang, H., Zhou, M., Raveggi, M., Barlow, A.J., and Glushenkov, A.M., ChemPlusChem, 2017, vol. 82, p. 295.

    Article  CAS  Google Scholar 

  5. Liang, X., Zhao, Z., Zhu, M., Liu, F., Wang, L., Yin, H., Qiu, G., Cao, F., Liu, X., and Feng, X., Environ. Sci.: Nano, 2017, vol. 4, p. 1656.

    CAS  Google Scholar 

  6. Khodashenas, B. and Ghorbani, H.R., Arab. J. Chem., 2019, vol. 12, no. 8, p. 1823.

    Article  CAS  Google Scholar 

  7. Debnath, D., Kim, C., Kim, S.H., and Geckeler, K.E., Macromol. Rapid Commun., 2010, vol. 31, p. 549.

    Article  CAS  Google Scholar 

  8. Farrag, N.S., El-Sabagh, H.A., Al-Mahallawi, A.M., Amin, A.M., Abd El-Bary, A., and Mamdouh, W., Int. J. Pharm., 2017, vol. 529, p. 123.

    Article  CAS  Google Scholar 

  9. Sakr, T.M., Khowessah, O.M., Motaleb, M.A., Abd El-Bary, A., El-Kolaly, M.T., and Swidan, M.M., Eur. J. Pharm. Sci., 2018, vol. 122, p. 239.

    Article  Google Scholar 

  10. Loo, Y.Y., Chieng, B.W., Nishibuchi, M., and Radu, S., Int. J. Nanomed., 2012, vol. 7, p. 4263.

    CAS  Google Scholar 

  11. Al Wabli, R.I., Sakr, T.M.M.H., Khedr, M.A., Selim, A.A., Abd El Motaleb Abd El Rahman, M., and Zaghary, W.A., Chem. Centr. J., 2016, vol. 10, p. 73.

    Article  Google Scholar 

  12. Amin, A.M., Soliman, S.E., and El-Aziz, H.A., J. Label. Compd. Radiopharm., 2009, vol. 53, p. 1.

    Google Scholar 

  13. Amin, A.M., Killa, H.M., and El-Aziz, H.A., J. Radioanal. Nucl. Chem., 2010, vol. 283, no. 2, p. 273.

    Article  CAS  Google Scholar 

  14. Li, D., Han, T., Zhang, L., Zhang, H., and Chen, H., R. Soc. Open Sci., 2017, vol. 4, paper 170756, p. 1.

    Article  Google Scholar 

  15. Meng, Y., Nanomaterials, 2015, vol. 5, p. 1124

  16. Cullity, B.D., Elements of X-ray Diffraction, Reading MA: Addison-Wesley, 1978.

    Google Scholar 

  17. Li, N., Zhao, P., and Astruc, D., Angew. Chem. Int. Ed., 2014, vol. 53, p. 1756.

    Article  CAS  Google Scholar 

  18. Usui, A. and Mita, N., Clays Clay Miner., 1995, vol. 43, p. 116.

    Article  CAS  Google Scholar 

  19. Ringe, E., IUCrJ, 2014, vol. 1, p. 530–539.

    Article  CAS  Google Scholar 

  20. Wu, J. and Lin, L.Y., Adv. Optical Mater, 2015, vol. 3, p. 1530.

    Article  CAS  Google Scholar 

  21. Desai, R., Mankad, V., Gupta, K., and Jha, P.K., Nanosci. Nanotechnol. Lett., 2012, vol. 4, p. 30.

    Article  CAS  Google Scholar 

  22. Nhung, T.T. and Lee, S.-W., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 23, p. 21335. https://doi.org/10.1021/am506297n

    Article  CAS  PubMed  Google Scholar 

  23. Wu, C., Zhou, X., and Wei, J., Nanoscale Res. Lett., 2015, vol. 10, paper 354, p. 1.

    Article  Google Scholar 

  24. Motaleb, M.A., El-Kolaly, M.T., Rashed, H.M., and Abd El-Bary, A., J. Radioanal. Nucl. Chem., 2011, vol. 289, p. 915.

    Article  CAS  Google Scholar 

  25. Majkowska-Pilip, A. and Bilewicz, A., J. Inorg. Biochem., 2011, vol. 105, no. 2, p. 313.

    Article  CAS  Google Scholar 

  26. Yang, L., Kuang, H., Zhang, W., Aguilar, Z.P., Wei, H., and Xu, H., H., Sci. Rep., 2017, vol. 7, p. 3303.

    Article  Google Scholar 

  27. Guzmán, M.G., Dille, J., and Godet, S., Int. J. Chem. Biomol. Eng., 2009, vol. 2, p. 3.

    Google Scholar 

  28. Ghosh, S., Upadhay, A., Singh, A.K.R., and Kumar, A., Int. J. Pharma Bio Sci., 2010, vol. 1, no. 3, p. 28.

    Google Scholar 

  29. Wu, B., Mathews, N., and Sum, T-Ch., Plasmonic Organic Solar Cells, Nanosc. Nanotechnol., Berlin:. Springer, 2017.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. El-Sabagh.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sabagh, H.A., Mohamed, S. & Amin, A.M. Efficiency of Radiolabeled Silver Nanoflowers as Theranostic Agent. Radiochemistry 62, 226–234 (2020). https://doi.org/10.1134/S1066362220020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220020101

Keywords:

Navigation