Skip to main content
Log in

Effect of Graphene Oxide and Carbon Nanotubes on the Reaction of Tritium Atoms with Dalargin

  • Published:
Radiochemistry Aims and scope

Abstract

Effect of carbon substrates materials (graphene oxide, reduced graphene oxide, single-walled carbon nanotubes) on the result of tritium introduction into dalargin peptide was studied by the thermal activation method. It was shown that, when dalargin is deposited onto carbon substrates, the distribution of tritium over amino-acid residues strongly changes as compared with a thick target deposited directly onto glass walls of a vessel. It was demonstrated that, when dalargin is deposited onto the carbon materials studied, the content of tritium in phenylalanine substantially increases, which indicates that the isotope exchange reaction occurs by the electrophilic mechanism. It was also found that the content of tritium in other amino-acid residues substantially changes, which is due to the difference between the structures of adsorption layers of the peptide, formed n the carbon materials under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lee, A.J., et al., Amino Acids, 2015, vol. 47, no. 5, p. 91.

    Google Scholar 

  2. Saljoughian, M. and Williams, P., Curr. Pharm. Des., 2000, vol. 6, no. 10, p. 1029.

    Article  CAS  Google Scholar 

  3. Myasoedov, N.F., J. Label. Compd. Radiopharm., 1993, vol. 33, no. 5, p. 391. https://doi.org/10.1002/jlcr.2580330505

    Article  CAS  Google Scholar 

  4. Lockley, W.J.S., J. Label. Compd. Radiopharm., 2007, vol. 50, nos. 5–6, p. 256. https://doi.org/10.1002/jlcr.1232

    Article  CAS  Google Scholar 

  5. Shevchenko, V.P., Nagaev, I.Y., and Myasoedov, N.F., J. Label. Compd. Radiopharm., 2010, vol. 53, nos. 11–12, p. 693. https://doi.org/10.1002/jlcr.1828

    Article  CAS  Google Scholar 

  6. Kopylov, A.T., et al., Rapid Commun. Mass Spectrom., 2016, vol. 30, no. 11, p. 128.

    Article  Google Scholar 

  7. Hickey, M.J., et al., J. Label. Compd. Radiopharm., 2007, vol. 50, nos. 5–6, p. 286. https://doi.org/10.1002/jlcr.1233

    Article  CAS  Google Scholar 

  8. Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Radiochemistry, 2012, vol. 54, no. 1, p. 79. https://doi.org/10.1134/S1066362212010122

    Article  CAS  Google Scholar 

  9. Kozlowska, M., Kanski, R., and Kanska, M., J. Label. Compd. Radiopharm., 2005, vol. 48, no. 3, p. 23. https://doi.org/10.1002/jlcr.919

    Article  CAS  Google Scholar 

  10. Zhang, Y., J. Label. Compd. Radiopharm., 2017, vol. 60, no. 13, p. 608. https://doi.org/10.1002/jlcr.3559

    Article  CAS  Google Scholar 

  11. Egan, J.A. and Filer, C.N., J. Radioanal. Nucl. Chem., 2016, vol. 307, no. 1, p. 549. https://doi.org/10.1007/s10967-015-4158-6

    Article  CAS  Google Scholar 

  12. Pajak M., et al., J. Radioanal. Nucl. Chem., 2018, vol. 317, no. 2, p. 643. https://doi.org/10.1007/s10967-018-5932-z

    Article  CAS  Google Scholar 

  13. Neiman, L.A., Smolyakov, V.S., and Shishkov, A.V., Itogi Nauki Tekh., Moscow: Moskva, 1985.

    Google Scholar 

  14. Girard, H.A.T., et al., Chem. Commun., 2014, vol. 50, no. 22, p. 2916.

    Article  CAS  Google Scholar 

  15. Bush, G.A., et al., J. Biol. Chem., 1981, vol. 256, no. 23, p. 12213.

    CAS  PubMed  Google Scholar 

  16. Filatov, E.S. and Simonov, E.F., Fiziko-khimicheskie i yaderno-khimicheskie sposoby polucheniya mechenykh soedinenii i ikh identifikatsiya (Physicochemical and Nuclear-Chemical Methods for Obtaining Labeled Compounds and Identification of These), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  17. Badun, G.A., Chernysheva, M.G., and Ksenofontov, A.L., Radiochim. Acta, 2012, vol. 100, no. 6, p. 401.

    Article  CAS  Google Scholar 

  18. Badun, G.A., et al., Radiochim. Acta, 2016, vol. 104, no. 8, p. 593.

    Article  CAS  Google Scholar 

  19. Badun, G.A., et al., Radiochim. Acta, 2014, vol. 102, no. 10, p. 941.

    Article  CAS  Google Scholar 

  20. Tsetlin, V.I.T., et al., Eur. J. Biochem., 1988, vol. 178, no. 1, p. 123.

    Article  CAS  Google Scholar 

  21. Agafonov, D.E., Kolb, V.A., and Spirin, A.S., Proc. Natl. Acad. Sci., US National Academy of Sciences, 1997, vol. 94, no. 24, p. 12892.

    Article  CAS  Google Scholar 

  22. Bogacheva, E.N., et al., Proc. Natl. Acad. Sci., 1998, vol. 95, no. 6, p. 2790.

    Article  CAS  Google Scholar 

  23. Razzhivina, I.A., et al., Radiochemistry, 2019, vol. 61, no. 1, p. 66. https://doi.org/10.1134/S1066362219010107

    Article  CAS  Google Scholar 

  24. Plotnikov, E.Y., et al., Toxicol. Lett., 2013, vol. 220, no. 3, p. 303.

    Article  CAS  Google Scholar 

  25. Schroeder, U., Sommerfeld, P., and Sabel, B.A., Peptides, 1998, vol. 19, no. 4, p. 777.

    Article  CAS  Google Scholar 

  26. Tadzhibova, L.T., et al., Bull. Exp. Biol. Med., 2011, vol. 150, no. 3, p. 304.

    Article  CAS  Google Scholar 

  27. Tran, D.N.H., Kabiri, S., and Losic, D., Carbon, 2014, vol. 76, p. 193. https://doi.org/10.1016/j.carbon.2014.04.067

    Article  CAS  Google Scholar 

  28. Chernysheva, M.G., et al., Colloids Surf., A, 2017, vol. 520, p. 1

  29. Stepanov, K.V., et al., Vest. Mosk. Univ., Ser. 2, Khim., 2005, vol. 46, no. 6, p. 395.

    CAS  Google Scholar 

  30. Razzhivina, I.A., Candidate Sci (Chem.) Dissertation, Moscow, 2019.

  31. Zolotarev, Y.A., et al., Amino Acids, 2003, vol. 24, no. 3, p. 325.

    Article  CAS  Google Scholar 

  32. Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Radiochemistry, 2018, vol. 60, no. 2, p. 105. https://doi.org/10.1134/S1066362218020017

    Article  CAS  Google Scholar 

  33. Filatov, E.S., Simonov, E.F., and Orlova, M.A., Russ. Chem. Rev., 1981, vol. 50, no. 12, p. 1134. https://doi.org/10.1070/RC1981v050n12ABEH002750

    Article  Google Scholar 

  34. Prins, R., Chem. Rev., 2012, vol. 112, no. 5, p. 2714.

    Article  CAS  Google Scholar 

  35. Lipson, A.G., et al., Int. J. Hydrogen Energy, 2012, vol. 37, no. 7, p. 5676.

    Article  CAS  Google Scholar 

  36. Pham, V.H., et al., J. Mater. Chem., A, 2013, vol. 1, no. 4, p. 1070.

    Article  CAS  Google Scholar 

  37. Silambarasan, D., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 21, p. 11419.

    Article  CAS  Google Scholar 

  38. Pazun, J.L., J. Chem. Inf. Model., 1993, vol. 33, no. 6, p. 931.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Chernysheva.

Ethics declarations

FUNDING

The study was supported by the Russian Foundation for Basic Research (grant no. 18-33-20147-mol-a -ved).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernysheva, M.G., Bunyaev, V.A. & Badun, G.A. Effect of Graphene Oxide and Carbon Nanotubes on the Reaction of Tritium Atoms with Dalargin. Radiochemistry 62, 264–269 (2020). https://doi.org/10.1134/S1066362220020162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220020162

Keywords:

Navigation