Skip to main content
Log in

Insight into Oxidation of Lead Powder during Electrodeposition

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Pure lead powder can be electrodeposited by reduction of lead ions (Pb2+) in aqueous electrolyte. In this investigation, ultra-fine lead powders with a minimum median diameter of 4.5 μm were electrodeposited in acetate solution. The formation mechanism of lead oxide (PbO) during electrodeposition was proposed. Operation parameters such as pH value, current density, and gelatin had remarkable influence on oxidation degree, median diameter, and current efficiency, which were detailed for the first time. Metallic Pb was formed with strong (111) preferred orientation, and micrography, composition, and structure were characterized. Amorphous PbO was found in as-deposited lead powder, and a gel-layer process was proposed to elucidate the formation of PbO. It was suggested the Pb···OH was the most important intermediate state to form PbO and the gel-layer played the key role in generation of pure lead powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Nikolić, N.D. and Popov, K.I., in Electrodeposition and Surface Finishing, Djokić, S.S., Ed., New York: Springer, 2014.

    Google Scholar 

  2. Yt, P., Gw, M., Ld, Z., Y, Q., Xy, G., Aw, Z., and Q, F., Adv. Funct. Mater., 2002, vol. 12, p. 719.

    Article  Google Scholar 

  3. Avellaneda, C.O., Napolitano, M.A., Kaibara, E.K., and Bulhões, L.O.S., Electrochim. Acta, 2005, vol. 50, p. 1317.

    Article  CAS  Google Scholar 

  4. Chen, J.-H., Lo, S.-C., Chao, C.-G., and Liu, T.-F., Jpn. J. Appl. Phys., 2008, vol. 47, p. 4815.

    Article  CAS  Google Scholar 

  5. Wong, S.M. and Abrantes, L.M., Electrochim. Acta, 2005, vol. 51, p. 619.

    Article  CAS  Google Scholar 

  6. Ashgriz, N., Handbook of Atomization and Sprays, Springer, 2011.

    Book  Google Scholar 

  7. Ricks, R.A. and Clyne, T.W., J. Mater. Sci. Lett., 1985, vol. 4, p. 814.

    Article  CAS  Google Scholar 

  8. Nikolić, N.D., Stevanović, S.I., and Branković, G., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, p. 3274.

    Article  CAS  Google Scholar 

  9. Wang, C.-Y., Lu, M.-Y., Chen, H.-C., and Chen, L.-J., J. Phys. Chem. C, 2007, vol. 111, p.6215.

    Article  CAS  Google Scholar 

  10. Rabah, M., AIMSMater. Sci., 2017, vol. 4, p. 1358.

    CAS  Google Scholar 

  11. Varavko, I.A., Radkevich, L.S., Chirkov, A.S., and Mironenko, N.N., Sov. Powder Metall. Met. Ceram., 1990, vol. 29, p. 340.

    Article  Google Scholar 

  12. Wang, Y., Jiang, X., Herricks, T., and Xia, Y., J. Phys. Chem. B, 2004, vol. 108, p. 8631.

    Article  CAS  Google Scholar 

  13. Michotte, S., Int. J. Mod. Phys. B, 2003, vol. 17, p. 4601.

    Article  Google Scholar 

  14. Ghali, E. and Girgis, M., Metall. Trans. B, 1985, vol. 16, p. 489.

    Article  Google Scholar 

  15. Popov, K.I., Stojilković, E.R., Radmilović, V., and Pavlović, M.G., Powder Technol., 1997, vol. 93, p. 55.

    Article  CAS  Google Scholar 

  16. Yao, C.-Z., Liu, M., Zhang, P., He, X.-H., Li, G.-R., Zhao, W.-X., Liu, P., and Tong, Y.-X., Electrochim. Acta, 2008, vol. 54, p. 247.

    Article  CAS  Google Scholar 

  17. Nikolić, N.D., Branković, G., and Lačnjevac, U.Č., J. Solid State Electrochem., 2012, vol. 16, p. 2121.

    Article  CAS  Google Scholar 

  18. Mostany, J., Parra, J., and Scharifker, B.R., J. Appl. Electrochem., 1986, vol. 16, p. 333.

    Article  CAS  Google Scholar 

  19. Owais, A., World Metall.–Erzmet., 2012, vol. 65, p. 361.

    CAS  Google Scholar 

  20. Ehlers, C., König, U., Staikov, G., and Schultze, J.W., Electrochim. Acta, 2001, vol. 47, p. 379.

    Article  CAS  Google Scholar 

  21. Rashkova, B., Guel, B., Pötzschke, R.T., Staikov, G., and Lorenz, W.J., Electrochim. Acta, 1998, vol. 43, p. 3021.

    Article  CAS  Google Scholar 

  22. Cherevko, S., Xing, X., and Chung, C.-H., Appl. Surf. Sci., 2011, vol. 257, p. 8054.

    Article  CAS  Google Scholar 

  23. Nikolić, N.D., Vaštag, D.D., Maksimović, V.M., and Branković, G., Trans. Nonferrous Met. Soc. China, 2014, vol. 24, p. 884.

    Article  CAS  Google Scholar 

  24. Carlos, I.A., Malaquias, M.A., Oizumi, M.M., and Matsuo, T.T., J. Power Sources, 2001, vol. 92, p. 56.

    Article  CAS  Google Scholar 

  25. Ru, J., Bu, J., Wang, Z., Hua, Y., and Wang, D., J. Appl. Electrochem., 2019, vol. 49, p. 369.

    Article  CAS  Google Scholar 

  26. Ru, J., Hua, Y., Xu, C., Li, J., Li, Y., Wang, D., Qi, C., and Jie, Y., Appl. Surf. Sci., 2015, vol. 335, p. 153.

    Article  CAS  Google Scholar 

  27. Nikolić, N.D., Popov, K.I., Živković, P.M., and Branković, G., J. Electroanal. Chem., 2013, vol. 691, p. 66.

    Article  CAS  Google Scholar 

  28. Nikolić, N.D., Maksimović, V.M., Branković, G., Živković, P.M., and Pavlović, M.G., J. Serb. Chem. Soc., 2013, vol. 78, p. 1387.

    Article  CAS  Google Scholar 

  29. Nikolić, N.D., Popov, K.I., Ivanović, E.R., Branković, G., Stevanović, S.I., and Živković, P.M., J. Electroanal. Chem., 2015, vol. 739, p. 137.

    Article  CAS  Google Scholar 

  30. Nikolić, N.D., Vaštag, D.D., Živković, P.M., Jokić, B., and Branković, G., Adv. Powder Technol., 2013, vol. 24, p. 674.

    Article  CAS  Google Scholar 

  31. Ni, Y., Zhang, Y., and Hong, J., CrystEngComm, 2011, vol. 13, p. 934.

    Article  CAS  Google Scholar 

  32. Carlos, I.A., Siqueira, J.L.P., Finazzi, G.A., and de Almeida, M.R.H., J. Power Sources, 2003, vol. 117, p. 179.

    Article  CAS  Google Scholar 

  33. Kindy, H.M., Wahby, A.T., Koutnouyan, Z.Y., Salem, M.F., and Merchant, H.D., Sci. Sintering, 1980, vol. 12, p. 107.

    CAS  Google Scholar 

  34. Sun, Z., Zou, X.P., Cheng, J., Meng, X.M., Wei, C.L., Yang, G.Q., Lü, X.M., Feng, H.Y., and Yang, Y., Adv. Mater. Res., 2010, vols. 123–125, p. 659.

    Article  CAS  Google Scholar 

  35. Lü, X.M., Zou, X.P., Cheng, J., Ren, P.F., Meng, X.M., Yang, G.Q., Wei, C.L., and Sun, Z., Adv. Mater. Res., 2010, vols. 123–125, p. 1279.

    Article  CAS  Google Scholar 

  36. Zhitomirsky, I., Gal-Or, L., Kohn, A., and Hennicke, H.W., J. Mater. Sci. Lett., 1995, vol. 14, p. 807.

    Article  CAS  Google Scholar 

  37. Meng, L., Ustarroz, J., Newton, M.E., and Macpherson, J.V., J. Phys. Chem. C, 2017, vol. 121, p. 6835.

    Article  CAS  Google Scholar 

  38. Sawatani, S., Ogawa, S., Yoshida, T., and Minoura, H., Adv. Funct. Mater., 2005, vol. 15, p. 297.

    Article  CAS  Google Scholar 

  39. Kwon, Y., Lee, H., and Lee, J., Nanoscale, 2011, vol. 3, p. 4984.

    Article  CAS  Google Scholar 

  40. Cheng, J.I.N., Zou, X., Su, Y.I., Yang, G., and Lü, X., Funct. Mater. Lett., 2009, vol. 02, p. 185.

    Article  CAS  Google Scholar 

  41. Pan, J., Sun, Y., Li, W., Knight, J., and Manthiram, A., Nat. Commun., 2013, vol. 4, article no. 2178.

    Article  CAS  Google Scholar 

  42. Pan, J., Zhang, X., Sun, Y., Song, S., Li, W., and Wan, P., Ind. Eng. Chem. Res., 2016, vol. 55, p. 2059.

    Article  CAS  Google Scholar 

  43. Wang, Y.-y., Chai, L.-y., Chang, H., Peng, X.-y., and Shu, Y.-d., Trans. Nonferrous Met. Soc. China, 2009, vol. 19, p. 458.

    Article  CAS  Google Scholar 

  44. Vijh, A.K. and Randin, J.P., Surf. Technol., 1977, vol. 5, p. 257.

    Article  CAS  Google Scholar 

  45. Nikolić, N.D., Maksimović, V.M., and Branković, G., RSC Adv., 2013, vol. 3, p. 7466.

    Article  CAS  Google Scholar 

  46. Pavlov, D. and Monahov, B., J. Electrochem. Soc., 1996, vol. 143, p. 3616.

    Article  CAS  Google Scholar 

  47. Pavlov, D., Balkanov, I., Halachev, T., and Rachev, P., J. Electrochem. Soc., 1989, vol. 136, p. 3189.

    Article  CAS  Google Scholar 

  48. Pavlov, D., J. Electrochem. Soc., 1992, vol. 139, p. 3075.

    Article  CAS  Google Scholar 

  49. Persson, K., Materials Data on Pb2O (SG:224) by Materials Project, 2016.

  50. Yadav, V.S.K. and Purkait, M.K., RSC Adv., 2015, vol. 5, p. 40414.

    Article  CAS  Google Scholar 

  51. Easterday, C.C., Dedon, L.R., Zeller, M., and Oertel, C.M., Cryst. Growth Des., 2014, vol. 14, p. 2048.

    Article  CAS  Google Scholar 

  52. Veluchamy, P. and Minoura, H., J. Mater. Sci. Lett., 1996, vol. 15, p. 1705.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financial supported by the National Natural Science Foundation of China (Project no. 51664040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-jiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Cj., Zhao, Lx., Zhang, X. et al. Insight into Oxidation of Lead Powder during Electrodeposition. Prot Met Phys Chem Surf 56, 302–310 (2020). https://doi.org/10.1134/S2070205120020306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120020306

Keywords:

Navigation